SECOND EDITION

PROGRAMMING
_ LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

PRENTICE HALL SOFTWAAE SEFES

PIEFACE. ...ttt 6
Preface to the fir st @itION ... 8
Chapter 1- A Tutorial INtrodUCTION ..ot 9
1.1 GEtING SEAITEA ...ttt 9
1.2 Variablesand ArithmetiC EXPreSSionS. ... 11
1.3 THETOr SEALEMENT ...t 16
1.4 SyMBOIIC CONSLANTS ...ttt 18
1.5 Character INput and OULPUL.........cceiiiirricire e 19
1.5, 1 FIl@ COPYING. .ttt ettt s et se bbb s et ss et et s bbb st 19
1.5.2 Character COUNTINGcccoreiiririeiririeisesieese st saenas 21
1.5.3 LINE COUNTING....cititiiririeirtrieiseeieese et se et s e ss bbb e s b e e et 22
1.5 4 WOrd COUNTING ..eoviuiirieirisieisesieesesie st s e ss b s e s b snenas 23

LB AT T AYS ettt b et e R R R R e Rt R e R e R e R e e R R R n e nn e 25
1.7 FUNCHIONS ...ttt ettt ettt b ettt b et et 27
1.8 Arguments- Call DY VAlUB........cooiec e 31
1.9 CNAr ACEEN ATTAYS. ... iuiierieieresieese ettt b et e bt e bttt st b e s b 32
1.10 External VariableSand SCOPE..........ccccrireirrieiririeerese s 34
Chapter 2 - Types, Operatorsand EXPreSSiONS.........ccereerneensisesesie s 39
2.1 VariabIENAIMES ...ttt 39
2.2 Data TYPES ANA SIZES......ccuiiereeiiirieieririe ettt ettt ettt ne e 39
2.3 CONSLANES ...ttt b e e s e s s et R e s se R e e n e e n e nennas 40
24 DECIAI BLIONScueieeiiirteieirie ettt sttt s et e et e et b et s b et st b e e s b e e et 43
2.5 AritNMELIC OPENBLOIS.....coueeiieeiiiriei et 44
2.6 Relational and L ogiCal OPEratorS........cccovueerrieeririeierereesesee et ssesesessenas 44
2.7 TYPE CONVEN SIONS.....ceiiririeiiirieiesestesesesee e sesee et se s sesse et ssese e sebe e s sebe e ssesenessesenessesan 45
2.8 Increment and Decrement OPEr GLOFS.........currueieririeierereeiereseeesesese e sseseeseenas 49
2.9 BItWISE OPEI ALONS ...ttt ettt et a et s bbb e et st n b e e nnenan 50
2.10 Assignment Operatorsand EXPreSSIONS ..o esessssesessenes 51
2.11 Conditional EXPrESSIONS........ciiiiieiierieerireeesesie e esseseessenas 53
2.12 Precedence and Order of EValUALION..........cccoiirriinnieceeeseees e 54
Chapter 3 - CONtIOl FIOW ..ot 56
3.1 StatementS aNd BIOCKScccouiuiiiirieiirrieei et 56
T I OO 56
BB B S ettt 57
K3 S 1 (o T 58
3.5 L 00PS- WHIlE AN FOI ..ot 60
3.6 LOOPS - DO-WHIIE ..ot 63
3.7 Break and CONTINUE...........ccooiiiicerre st 64
3.8 GOt0 AN IADEIS.......ceeie s 65
Chapter 4 - Functionsand Program StFUCLUN €.........ccorerreerrreseseesesie e 67
4.1 BaSICS OF FUNCLIONS ...ttt 67
4.2 FuNctions RELUr NiNG NON-INTEOEN S.....cccoeuiririeeririeeririe et 70
A3 EXIErNaAl Vari@blEs........ooee e 72
4.4 SCOPE RUIES ...ttt ettt 77
A5 HEAAES FIlES.....o ittt 79
4.6 SEALIC VAl TADIES ... 80
4.7 REQISLEN VAl TADIES.....c.oeeiieee e 81
4.8 BIOCK SETUCLUI € ...ttt ettt 82
A9 I NITTAIIZAIION ...ttt 82
410 RECUI SION....uiitiniieieiste et se et e et s et s ettt bt b bt s b ettt et et b b s 83

4.11 THE C PrEPIOCESSONcueuieeierereeieesieiesessesesessesesesseesesse e st sss e e ssesessssesesessesessssesessssssensaes 85

AL L FIHETNCIUSION .ottt 85
4.11.2 M ACr O SUDSLITULION ...t 86
4.11.3 Conditional INCIUSIONcouiuieiiiieiiieere e 87
Chapter 5- POINTEr SANU ATTAYS.. ..ottt es e 89
5.1 POINTEr SANT AGUI ESSES.......oiieiiirietirirte ettt a e ne e 89
5.2 Pointersand FUNCLION AFQUMENTS ..ot 91
5.3 POINTEr SANG AT AYS....c.iiiiieiiieieririeieresie ettt ettt s b eneenan 93
5.4 AdAreSS ATTTNMELIC.....c.iiieeieee e 96
5.5 Character Pointersand FUNCLIONS.........cooiiiieinreerre e 99
5.6 Pointer Arrays; POINTErSTO POINTENS.......ccoceoieireeeereee e 102
5.7 MUIti-AIMENSIONAI ATTAYS ..ovuiiierieirieieisee ettt 105
5.8 Initialization Of POINTEr ATTAYS ..ot 107
5.9 Pointersvs. Multi-dimensionNal ArTaYS.......cccoerreinrenineeesese e seseeees 107
5.10 Command-line Al QUMENTSceiriiiirereerieie e 108
5.11 POINTEr STO FUNCLIONS.......ciiiiiiecieiie et 112
5.12 Complicated DECIar @tiOnsS..........cccourureiririeirieieirieie e 115
ChEPLEr 6 - SEFUCTUIES......oiieiieiee ettt ettt 120
6.1 BASICS OF SIFUCLUN S ...ttt 120
6.2 SIruCtUr €S and FUNCLIONS........couiiiiiiirieiesese et 122
6.3 AT AYS Of SIFUCLUN ES......eeiiieeieieeeeie sttt 124
6.4 POINTEI STO SIFUCLUN ES.......ciiieeieiieie ettt 128
6.5 Self-referential SIrUCTUIES.........oiieee e 130
5.6 TADIE L OOKUP.....cuiieteuieeteistsieest sttt b bt ne e nn b 134
B.7 TYPEUE ...ttt 136
5.8 UNIONS ...ttt b et e bt e bbbt e bt e b s b 137
5.9 BIt-TIElUS ...t 138
Chapter 7 - INput @and OULPULc.coveeeierceeieeseerer et 141
7.1 Standard INput anNd OULPUL ..o 141
7.2 Formatted OULPUL - PriNtl ... 143
7.3 Variable-length Argument LiStS. ... 144
7.4 Formatted INPUL - SCANT ..o 146
7.5 FTIE ACCESS......c.eiieiieteeee ettt e bbbt e ettt b et nn et 148
7.6 Error Handling - StAerr and EXIT ... 151
7.7 LINeINPUL aNA OULPULcoviiiiiciiiieeeererieerese et 152
7.8 MiSCElaNEOUS FUNCLIONS.......coiiiiiiirieisieieees ettt 153
7.8. L SUrING OPEIALiONScuiieieiirieieesieiee sttt ettt neenas 154
7.8.2 Character Class Testing and CONVEr SIONcccoveeririeieninieeneseeesiseeseseseseseenas 154
T3 UNQELC.... ettt b et b e e nn e 154
7.8.4 ComMMANT EXECULIONc.vviniiriiiieieiie et 154
7.8.5 St0rage ManagemMeNtccoeirireieneneese e 155
7.8.6 Mathematical FUNCLIONS..........ccoiiiiiiiieee e 155
7.8.7 Random NUMDEr generationccocerrreninisenineereseseeses e 156
Chapter 8- The UNIX System INtErface. ... 157
B.L FilE DESCI IPLOIS ...ttt sttt s bt 157
8.2Low Level 1/0 - Read and WIITeot 158
8.3 0pen, Creat, ClOSe, UNINKcovcireieesceseese et 159
8.4 RANUOM ACCESS - L SEEK......cueiiiiuiririeieisiecses ettt 161
8.5 Example- An implementation of Fopen and GEtC..........cocccevrreireenneeneseeseens 162
8.6 EXample - LiStiNg Dir€CLOII€S......cueiieiieirerieiririeisisie et 165
8.7 Example - A SEOrage AllOCALONccoeoererieiririeirieeisesie st 170
AppendixX A - REFErenCEMaNUAIc.oiriiiie s 175

A L NI OOUGCTION .ot e e e e e e e e e e e et e e saaeeeesanseeeseaanseassaanseeesaaaseeeseaanneeesannnnnesannnes 175

A.2LeXICAl CONVENTIONS ..ottt 175
A2 L TOKENS ..ottt ettt et sttt b e b 175
AL2.2 COMIMENTS ..ottt e et b et n e b e e b e s e e nne s 175
A2 THBNTITIEN S.eie bbbttt nb e 175
A2 A KEYWOIUS ...ttt ettt ettt eb e e b 176
AL2.5 CONSLANES. ...ttt n e e en s 176
A28 SIHNG LITEIAlS ..ot 178

A3 SYNEAX NOLALION ...ttt 178

A AMEANING OF TABNTITIEN S 178
AAL SEOTAGE CIASS.....ceieeiiirieeisieese ettt eb s eb e 179
A A2 BASIC TYPES ..ottt ettt ettt ettt e ettt eb et 179
A A3 DENVEL TYPES.....ooeiiesieese ettt ea e 180
AL ATYPE QUAITIEN Su.neeeteese ettt 180

A.50DJECISANA LVAIUES ...t 180

ALB CONVEN SIONS......ciieiiirieiiesie sttt ettt e et et b e e b e e e b et et e e ne b se e b e s 181
A.B.11INtegral PromOtiON ..ot 181
A.B.21Ntegral CONVEN SIONS.......coeiiiirerieirerie ettt sne s 181
A.6.3INteger and FIOAtiNg.... ..o 181
AB.AFIOALING TYPES ..ottt ettt b sb e 181
A.6.5 ArithmetiC CONVEN SIONS.......cciiiiiiririeirerieese e 182
A.6.6 POINTErSANA INTEGEI'S ..o 182
ALB.T VO ettt 183
A.B.8 POINTEI STO VOIM......cciiiiiiirieeisee et 183

AT EXPIESSIONS ..ottt ettt ettt ettt ettt b s 183
A 7.1 POINTEr CONVEN SION ...ttt ss st se et se bt ese e s 184
A 7.2Primary EXPrESSIONS.coveirerieiririeisesieesesiee sttt s s sse s 184
A 7.3 POSLTIX EXPIESSIONS......oiiireiiirieierisie e se e se e ss e ss s sse s 185
AT AUNAIY OPEIALOIS. .. .ottt s e sn e ss e ene s e ene s 187
ALT.D CBIES. ..ttt b et 189
A.T7.6 MUILIPHCALIVE OPEN GLOIS ...ttt 189
AT.7 AAAITIVE OPEN GLOTS.....eeceierieiesieere ettt ss e 189
A.T7.8 Sift OPErALOIS.....ccveiieeeeiisieere ettt 190
A. 7.9 ReAtioNal OPErALOrS.......covvuiuierieeririeere e 190
A.7.10 EQUAITITY OPEIALONS.. ettt ettt 191
A.7.11 BitWiSe AND OPEIALOFcoueuieieeieririeeresiee st 191
A.7.12 Bitwise EXClUSIVE OR OPEI@LOF ... 191
A.7.13 Bitwise INCIUSIVE OR OPEN LTcccovvueirerieiririeesesie s 191
A.7.14 L0gICal AND OPEN Ococueereriiirieirieieesesie et sse s 192
A.7.15L0QICal OR OPEFALONcceiueuierieieririeereseee st sse s 192
A.7.16 ConditioNal OPEr@LONceerereeererieererieere et ss e 192
A.7.17 ASSIONMENT EXPrESSIONS ...ttt sse e sse s 193
A.7.18 COMMEA OPEIALON ...ttt sn e sn e n e nne s 193
A.7.19 CoNStaNt EXPrESSIONS......couiuiirieieririeiresieese sttt sse s 193

A B DECIAr GLIONS ...ttt ettt 194
A.8.1 Storage Class SPECITIENS.....cccir et 195
A B2 TYPE SPECITIEN S..eieeese ettt 195
A.8.3 Structureand Union DECIar alioNS..........cccoreererieerireiinesieeseseeeses e 196
ALBA ENUMEN BLIONS ...ttt sttt ne st eb et 199
A LB.5 DECIAr GLOIS......eceieeeeiieeie ettt 200
A.8.6 Meaning Of DECIAr @tOrS ... 200
A7 TNITIAIZALION ...t 204

ALB.B TYPENAIMES......oiiieiirieeeeet ettt a et n e s e e nne s 206

ABO TYPEAE ...t 206
A.8.10 TYPE EQUIVAIENCE.......coeiireeeeeeree et 207
AL SEALEIMENTS ...t e et e et b n et n e r e n s 207
A9 1 Labeled SLAtEMENTS ..o 208
A.9.2 EXPression SLAEMENTccooirreiririeirereeese st 208
A.9.3 ComMPOUNT SEAEEMENT ..o 208
A.9.4 SELECLION SLALEMENTS......c.oiieeieeeeer e 209
A9.5 ITeration SEALEMENTS ..o 209
AL9.6 JUMP SEALEMENTS ... 210
A.10 External DEClar@tions..........ocerreiriririrrie e 211
A.10.12 FUNCION DEFINITIONS......coiiiiieiiecese e 211
A.10.2 External DeClar @tiONS ... 213
A.11 SCOPE AN LIiNKAGE......co ittt 213
A L1 L LEXICAl SCOPE....ceieiuiirieieirieise ettt ettt sttt ne s 214
ALLL2 LINKAGE. ...ttt ettt ettt s e nb e 214
A L2 PrEPrOCESSING....vcuiereeeiesteieseseeiesessesesessesesesss e ssssesesessesesessesessssesessssesessssesessssesessssesenses 214
A 121 Trigraph SEQUENCES.......cccoeierieeerie ettt ss e 215
A12.2 LIiNE SPICING. ..ttt 215
A.12.3 Macro Definition and EXPanSION ... 215
A L2 A FHEINCIUSION ..ot 217
A.12.5 Conditional CoOMPIlALIONceirerieirrieree e 218
AL2.6 LINECONTIOl ..ottt 219
AL2.7 Error GENEIALION ..ottt sn e 220
ALL2.8 PragMasS.....ccccoeeuereeerieneeiesteesiesie e e e s e s s e s s s e nn e s s s e nn e ene s 220
A L2.9 NUI AIFECHIVE ...t 220
A.12.10 Predefined NAMES ... 220
AL GIAIMIMAT ...ttt b et s e e st s e e e b e s e e es e e nnenr e e ene s 220
AppendixX B - StaNdard LiDrary ... 228
B.1 Input and Output: <SEAION> ..o 228
B.L.1 Fil@ OPEr GLIONS......cuiiiieiiirieieisie ettt bbb 229
B.1.2 FOrmatted OULPULcueiieiiiieeirie e 230
B.1L.3 FOrmatted I NPUL ... 231
B.1.4 Character Input and Output FUNCLIONS........cccoveirririneeeseeeses e 233
B.1.5 Direct Input and OUtput FUNCLIONS........cccoiiinriirrceeeee e 233
B.1.6 File POSItiONING FUNCLIONScuoiiiiecee e 234
B.L.7 Error FUNCLIONS.......cciiiiieieiie ettt 234
B.2 Character ClassTestS: <CtyPen>.......cciiice e 234
B.3 String FUNCLIONS, <SEFNG.N> .o 235
B.4 Mathematical Functions, <math.h> ... 236
B.5 Utility Functions: <stdlib.n> ..o 237
B.6 DiagnostiCs: <aSSErt.N>.......ccoiicicec e 239
B.7 Variable Argument Lists: <stdarg.n>........ccoooiininnisere e 239
B.8 Non-local Jumps: <SEtjMP.N> ..o 240
B.9 Signals: <SIgNal.N> ... 240
B.10 Date and Time FUNCtions: <tIME.N> ..o 241
B.11 Inplementation-defined Limts: <limts.h> and <float. h>
.. 243

Preface

The computing world has undergone a revolution since the publication of The C
Programming Language in 1978. Big computers are much bigger, and personal
computers have capabilities that rival mainframes of a decade ago. During this time, C
has changed too, although only modestly, and it has spread far beyond its origins as the
language of the UNIX oper ating system.

The growing popularity of C, the changes in the language over the years, and the
creation of compilers by groups not involved in its design, combined to demonstrate a
need for a more precise and more contemporary definition of the language than the first
edition of this book provided. In 1983, the American National Standards Institute
(ANSI) established a committee whose goal was to produce “an unambiguous and
machine-independent definition of the language C", while still retaining its spirit. The
result isthe ANSI standard for C.

The standard formalizes constructions that were hinted but not described in the first
edition, particularly structure assignment and enumerations. It provides a new form of
function declaration that permits cross-checking of definition with use. It specifies a
standard library, with an extensive set of functions for performing input and output,
memory management, string manipulation, and similar tasks. It makes precise the
behavior of features that were not spelled out in the original definition, and at the same
time states explicitly which aspects of the language remain machine-dependent.

This Second Edition of The C Programming Language describes C as defined by the
ANSI standard. Although we have noted the places wher e the language has evolved, we
have chosen to write exclusively in the new form. For the most part, this makes no
significant difference; the most visible change is the new form of function declaration
and definition. M odern compilersalready support most features of the standard.

We have tried to retain the brevity of the first edition. C is not a big language, and it is
not well served by a big book. We have improved the exposition of critical features, such
as pointers, that are central to C programming. We have refined the original examples,
and have added new examples in several chapters. For instance, the treatment of
complicated declarations is augmented by programs that convert declarations into
words and vice versa. As before, all examples have been tested directly from the text,
which isin machine-readable form.

Appendix A, the reference manual, is not the standard, but our attempt to convey the
essentials of the standard in a smaller space. It is meant for easy comprehension by
programmers, but not as a definition for compiler writers -- that role properly belongs
to the standard itself. Appendix B isa summary of the facilities of the standard library.
It too is meant for reference by programmers, not implementers. Appendix C is a
concise summary of the changesfrom the original version.

As we said in the preface to the first edition, C “wears well as one's experience with it
grows'. With a decade more experience, we still feel that way. We hope that this book
will help you learn C and useit well.

7

We are deeply indebted to friends who helped us to produce this second edition. Jon
Bently, Doug Gwyn, Doug Mcllroy, Peter Nelson, and Rob Pike gave us perceptive
comments on almost every page of draft manuscripts. We are grateful for careful
reading by Al Aho, Dennis Allison, Joe Campbell, G.R. Emlin, Karen Fortgang, Allen
Holub, Andrew Hume, Dave Kristol, John Linderman, Dave Prosser, Gene Spafford,
and Chris van Wyk. We also received helpful suggestions from Bill Cheswick, Mark
Kernighan, Andy Koenig, Robin Lake, Tom London, Jim Reeds, Clovis Tondo, and
Peter Weinberger. Dave Prosser answered many detailed questions about the ANSI
standard. We used Bjarne Stroustrup's C++ trandator extensively for local testing of
our programs, and Dave Kristol provided uswith an ANSI C compiler for final testing.
Rich Drechder helped greatly with typesetting.

Our sincerethanksto all.

Brian W. Kernighan
DennisM. Ritchie

Preface to the first edition

C is a general-purpose programming language with features economy of expression,
modern flow control and data structures, and a rich set of operators. C isnot a ““very
high level"' language, nor a “"big" one, and is not specialized to any particular area of
application. But its absence of restrictions and its generality make it more convenient
and effective for many tasksthan supposedly mor e power ful languages.

C was originally designed for and implemented on the UNIX operating system on the
DEC PDP-11, by Dennis Ritchie. The operating system, the C compiler, and essentially
all UNIX applications programs (including all of the softwar e used to prepare this book)
are written in C. Production compilers also exist for several other machines, including
the IBM System/370, the Honeywell 6000, and the Interdata 8/32. C is not tied to any
particular hardware or system, however, and it is easy to write programs that will run
without change on any machine that supportsC.

This book is meant to help the reader learn how to program in C. It contains a tutorial
introduction to get new users started as soon as possible, separate chapters on each
major feature, and a reference manual. Most of the treatment is based on reading,
writing and revising examples, rather than on mere statements of rules. For the most
part, the examples are complete, real programs rather than isolated fragments. All
examples have been tested directly from the text, which is in machine-readable form.
Besides showing how to make effective use of the language, we have also tried where
possibletoillustrate useful algorithmsand principles of good style and sound design.

The book isnot an introductory programming manual; it assumes some familiarity with
basic programming concepts like variables, assignment statements, loops, and functions.
Nonetheless, a novice programmer should be able to read along and pick up the
language, although accessto mor e knowledgeable colleague will help.

In our experience, C has proven to be a pleasant, expressive and ver satile language for a
wide variety of programs. It is easy to learn, and it wears well as on's experience with it
grows. We hopethat thisbook will help you to useit well.

The thoughtful criticisms and suggestions of many friends and colleagues have added
greatly to this book and to our pleasure in writing it. In particular, Mike Bianchi, Jim
Blue, Stu Feldman, Doug McllIroy Bill Roome, Bob Rosin and Larry Rodser all read
multiple volumes with care. We are also indebted to Al Aho, Steve Bourne, Dan Dvorak,
Chuck Haley, Debbie Haley, Marion Harris, Rick Holt, Steve Johnson, John Mashey,
Bob Mitze, Ralph Muha, Peter Nelson, Elliot Pinson, Bill Plauger, Jerry Spivack, Ken
Thompson, and Peter Weinberger for helpful comments at various stages, and to Mile
Lesk and Joe Ossanna for invaluable assistance with typesetting.

Brian W. Kernighan
DennisM. Ritchie

Chapter 1 - A Tutorial Introduction

L et usbegin with a quick introduction in C. Our aim isto show the essential elements of
the language in real programs, but without getting bogged down in details, rules, and
exceptions. At this point, we are not trying to be complete or even precise (save that the
examples are meant to be correct). We want to get you as quickly as possible to the point
where you can write useful programs, and to do that we have to concentrate on the
basics: variables and constants, arithmetic, control flow, functions, and the rudiments of
input and output. We are intentionally leaving out of this chapter features of C that are
important for writing bigger programs. These include pointers, structures, most of C's
rich set of operators, several control-flow statements, and the standard library.

This approach and its drawbacks. Most notable is that the complete story on any
particular feature is not found here, and the tutorial, by being brief, may also be
misleading. And because the examples do not use the full power of C, they are not as
concise and elegant as they might be. We have tried to minimize these effects, but be
warned. Another drawback is that later chapters will necessarily repeat some of this
chapter. We hopethat therepetition will help you morethan it annoys.

In any case, experienced programmers should be able to extrapolate from the material
in this chapter to their own programming needs. Beginners should supplement it by
writing small, similar programs of their own. Both groups can use it asa framework on
which to hang the more detailed descriptionsthat begin in Chapter 2.

1.1 Getting Started

Theonly way to learn a new programming language is by writing programsin it. The
first program towriteisthe samefor all languages:

Print the words

hell o, world

This is a big hurdle; to leap over it you have to be able to create the program text
somewher e, compile it successfully, load it, run it, and find out where your output went.
With these mechanical details master ed, everything elseiscompar atively easy.

In C, theprogram toprint "hell o, world" is

#i ncl ude <stdi o. h>
mai n()

printf("hello, world\n");

Just how to run this program depends on the system you are using. As a specific
example, on the UNIX operating system you must create the program in a file whose
nameendsin ~. c¢'', such ashel I o. ¢, then compileit with the command

cc hello.c

10

If you haven't botched anything, such as omitting a character or misspelling something,
the compilation will proceed silently, and make an executable file called a. out . If you
run a. out by typing the command

a. out
it will print

hell o, world
On other systems, theruleswill bedifferent; check with alocal expert.

Now, for some explanations about the program itself. A C program, whatever its size,
consists of functions and variables. A function contains statements that specify the
computing operations to be done, and variables store values used during the
computation. C functions are like the subroutines and functions in Fortran or the
procedures and functions of Pascal. Our example is a function named mai n. Normally
you are at liberty to give functions whatever namesyou like, but ““mai n'' is special - your
program begins executing at the beginning of main. This means that every program
must have a mai n somewhere.

mai n will usually call other functions to help perform its job, some that you wrote, and
othersfrom librariesthat are provided for you. Thefirst line of the program,

#i ncl ude <stdi o. h>
tells the compiler to include information about the standard input/output library; the
line appears at the beginning of many C source files. The standard library is described
in Chapter 7 and Appendix B.

One method of communicating data between functions is for the calling function to
provide a list of values, called arguments, to the function it calls. The parentheses after
the function name surround the argument list. In this example, mai n is defined to be a
function that expects no arguments, which isindicated by theempty list ().

#incl ude <stdio. h> i nclude i nformati on about standard
library
mai n() define a function called main

that received no argunent val ues
statements of main are enclosed in braces
printf("hello, world\n"); main calls library function printf
to print this sequence of characters
} \n represents the newline character

The first C program

The statements of a function are enclosed in braces{ }.Thefunction mai n containsonly
one statement,

printf("hello, world\n");

11

A function is called by naming it, followed by a parenthesized list of arguments, so this
calls the function printf with the argument "hell o, world\n". printf isalibrary
function that printsoutput, in this case the string of character s between the quotes.

A sequence of charactersin double quotes, like "hel | o, worl d\n", iscalled a character
string or string constant. For the moment our only use of character strings will be as
argumentsfor pri ntf and other functions.

The sequence \ n in the string is C notation for the newline character, which when
printed advances the output to the left margin on the next line. If you leave out the \ n (a
worthwhile experiment), you will find that there is no line advance after the output is
printed. You must use \ n to include a newline character in the pri nt f argument; if you
try something like

printf("hello, world

the C compiler will produce an error message.

printf never supplies a newline character automatically, so several calls may be used to
build up an output linein stages. Our first program could just aswell have been written

#i ncl ude <stdi o. h>

mai n()

{
printf("hello, ");

printf("world");
printf("\n");
}
to produce identical output.

Noticethat \ n represents only a single character. An escape sequence like\ n provides a
general and extensible mechanism for representing hard-to-type or invisible characters.
Among the others that C provides are \'t for tab, \ b for backspace, \" for the double
quoteand\\ for the backslash itself. Thereisa completelist in Section 2.3.

Exercise 1-1. Run the “hello, world" program on your system. Experiment with
leaving out parts of the program, to see what error messages you get.

Exercise 1-2. Experiment to find out what happens when pri nts's argument string
contains\c, where cissome character not listed above.

1.2 Variables and Arithmetic Expressions

The next program uses the formula °C=(5/9)(°F-32) to print the following table of
Fahrenheit temperaturesand their centigrade or Celsius equivalents:

12

1 -17
20 -6
40 4

60 15
80 26
100 37

120 48
140 60
160 71

180 82

200 93
220 104
240 115
260 126
280 137
300 148

The program itself still consists of the definition of a single function named mai n. It is
longer than the one that printed “hello, world", but not complicated. It introduces
several new ideas, including comments, declarations, variables, arithmetic expressions,
loops, and formatted output.

#i ncl ude <stdi o. h>

/* print Fahrenheit-Cel sius table

for fahr = 0, 20, ..., 300 */
mai n()
. _
int fahr, cel sius;
int |ower, upper, step
| ower = 0; /* lower limt of tenperature scale */
upper = 300; [* upper limt */
step = 20; /* step size */
fahr = | ower;
while (fahr <= upper) {
celsius =5 * (fahr-32) / 9;
printf("%l\t%\n", fahr, celsius);
fahr = fahr + step
}
}
Thetwo lines

/* print Fahrenheit-Cel sius table
for fahr = 0, 20, ..., 300 */
are a comment, which in this case explains briefly what the program does. Any
characters between /* and */ are ignored by the compiler; they may be used freely to
make a program easier to understand. Comments may appear anywhere where a blank,
tab or newline can.

In C, all variables must be declared before they are used, usually at the beginning of the
function before any executable statements. A declaration announces the properties of
variables; it consists of a name and a list of variables, such as

int fahr, cel sius;
int |ower, upper, step

Thetypei nt meansthat thevariableslisted areintegers; by contrast with f | oat , which
means floating point, i.e., numbers that may have a fractional part. The range of both

13

int and fl oat depends on the machine you are using; 16-bitsi nt s, which lie between -
32768 and +32767, are common, as are 32-biti nt s. A f| oat number istypically a 32-bit
quantity, with at least six significant digits and magnitude generally between about 10®
and 10,

C provides several other datatypesbesidesi nt and f | oat , including:

'char | character - asinglebyte
|short | short integer

'long | longinteger

| doubl e | double-precision floating point

The size of these objectsis also machine-dependent. There are also arrays, structures and
unions of these basic types, pointersto them, and functionsthat return them, all of which
we will meet in due course.

Computation in the temperature conversion program begins with the assignment
statements

| oner = 0;
upper = 300;
step = 20;

which set the variables to their initial values. Individual statements are terminated by
semicolons.

Each line of the table is computed the same way, so we use a loop that repeats once per
output line; thisisthe purpose of thewhi | e loop

while (fahr <= upper) {

}
The whi | e loop operates as follows: The condition in parentheses is tested. If it istrue

(fahr islessthan or equal to upper), the body of the loop (the three statements enclosed
in braces) is executed. Then the condition is re-tested, and if true, the body is executed
again. When the test becomes false (f ahr exceeds upper) the loop ends, and execution
continues at the statement that follows the loop. There are no further statementsin this
program, so it terminates.

The body of a while can be one or more statements enclosed in braces, as in the
temper atur e converter, or a single statement without braces, asin

while (i <7j)

i =2 * i;
In either case, we will always indent the statements controlled by the whi | e by one tab
stop (which we have shown as four spaces) so you can see at a glance which statements
are inside the loop. The indentation emphasizes the logical structure of the program.
Although C compilers do not care about how a program looks, proper indentation and
spacing are critical in making programs easy for peopleto read. We recommend writing

14

only one statement per line, and using blanks around operatorsto clarify grouping. The
position of braces is less important, although people hold passionate beliefs. We have
chosen one of several popular styles. Pick a stylethat suitsyou, then useit consistently.

Most of the work gets donein the body of the loop. The Celsiustemperatureiscomputed
and assigned to thevariablecel si us by the statement

celsius =5 * (fahr-32) / 9;
The reason for multiplying by 5 and dividing by 9 instead of just multiplying by 5/ 9 is
that in C, as in many other languages, integer division truncates: any fractional part is
discarded. Since 5 and 9 are integers. 5/ 9 would be truncated to zero and so all the
Celsiustemperatureswould bereported as zero.

This example also shows a bit more of how pri ntf works. printf isa general-purpose
output formatting function, which we will describe in detail in Chapter 7. Its first
argument is a string of charactersto be printed, with each %indicating where one of the
other (second, third, ...) arguments is to be substituted, and in what form it is to be
printed. For instance, %d specifiesan integer argument, so the statement

printf("%l\t%l\n", fahr, celsius);
causes the values of the two integers f ahr and cel si us to be printed, with atab (t)
between them.

Each % construction in the first argument of printf ispaired with the corresponding
second argument, third argument, etc.; they must match up properly by number and
type, or you will get wrong answers.

By the way, printf isnot part of the C language; thereisno input or output defined in
Citsdlf. printf isjust a useful function from the standard library of functions that are
normally accessible to C programs. The behaviour of printf is defined in the ANSI
standard, however, so its properties should be the same with any compiler and library
that conformsto the standard.

In order to concentrate on C itself, we don't talk much about input and output until
chapter 7. In particular, we will defer formatted input until then. If you have to input
numbers, read the discussion of the function scanf in Section 7.4. scanf islikeprintf,
except that it readsinput instead of writing output.

There are a couple of problems with the temperature conversion program. The simpler
one is that the output isn't very pretty because the numbers are not right-justified.
That's easy to fix; if we augment each % in the printf statement with a width, the
numbersprinted will beright-justified in their fields. For instance, we might say

printf("¥3d ¥%d\n", fahr, celsius);
to print thefirst number of each linein afield three digitswide, and the second in a field
six digitswide, likethis:

0 -17
20 -6
40 4

60 15

15

80 26
100 37

The more serious problem is that because we have used integer arithmetic, the Celsius
temperatures are not very accurate; for instance, 0°F is actually about -17.8°C, not -17.
To get more accurate answers, we should use floating-point arithmetic instead of
integer. Thisrequires some changesin the program. Hereisthe second version:

#i ncl ude <stdi o. h>

/* print Fahrenheit-Celsius table
for fahr = 0, 20, ..., 300; floating-point version */
mai n()
{
float fahr, celsius;
float |ower, upper, step;

| ower = 0; /* lower linmt of tenperatuire scale */
upper = 300; /[* upper limt */

step = 20; /* step size */

fahr = | ower;

whil e (fahr <= upper) {
celsius = (5.0/9.0) * (fahr-32.0);
printf("93.0f %.1f\n", fahr, celsius);
fahr = fahr + step

}
}

Thisis much the same as before, except that f ahr and cel si us aredeclared to bef | oat
and the formula for conversion iswritten in a more natural way. We were unable to use
5/ 9 in the previous version because integer division would truncate it to zero. A decimal
point in a constant indicates that it is floating point, however, so 5.0/9.0 is not
truncated becauseit istheratio of two floating-point values.

If an arithmetic operator has integer operands, an integer operation is performed. If an
arithmetic operator has one floating-point operand and one integer operand, however,
the integer will be converted to floating point before the operation is done. If we had
written (fahr-32), the 32 would be automatically converted to floating point.
Nevertheless, writing floating-point constants with explicit decimal points even when
they haveintegral values emphasizestheir floating-point naturefor human readers.

The detailed rules for when integers are converted to floating point are in Chapter 2.
For now, notice that the assignment

fahr = | ower;
and thetest

whil e (fahr <= upper)
alsowork in thenatural way - thei nt isconverted tof | oat beforethe operation isdone.

Theprintf conversion specification 8. of saysthat a floating-point number (heref ahr)
is to be printed at least three characters wide, with no decimal point and no fraction
digits. %6. 1f describes another number (cel sius) that is to be printed at least six
characterswide, with 1 digit after the decimal point. The output lookslikethis:

0 -17.8

16
20 -6.7
40 4.4
Width and precision may be omitted from a specification: %6f saysthat the number isto

be at least six characterswide; % 2f specifiestwo characters after the decimal point, but
thewidth isnot constrained; and % merely saysto print the number asfloating point.

lod | print asdecimal integer

'%d | print asdecimal integer, at least 6 characterswide
\ o \ print asfloating point

luf | print asfloating point, at least 6 characterswide

'% 2f | print asfloating point, 2 char acters after decimal point
|%. 2f | print asfloating point, at least 6 wide and 2 after decimal point

Among others, print f also recognizes %o for octal, % for hexadecimal, % for character,
us for character string and %sfor itself.

Exer cise 1-3. Modify thetemperature conver sion program to print a heading abovethe
table.

Exercise 1-4. Writea program to print the corresponding Celsiusto Fahrenheit table.

1.3 The for statement

There are plenty of different ways to write a program for a particular task. Let'stry a
variation on the temperature converter.

#i ncl ude <stdi o. h>

/* print Fahrenheit-Cel sius table */
mai n()

int fahr;

for (fahr = 0; fahr <= 300; fahr = fahr + 20)
printf("98d %.1f\n", fahr, (5.0/9.0)*(fahr-32));
}

This produces the same answers, but it certainly looks different. One major change is
the elimination of most of the variables; only f ahr remains, and we have madeit ani nt .
The lower and upper limits and the step size appear only as constants in the for
statement, itself a new construction, and the expression that computes the Celsius
temperature now appears as the third argument of printf instead of a separate
assignment statement.

Thislast changeisan instance of a general rule-in any context whereit is permissibleto
use the value of some type, you can use a more complicated expression of that type.
Since the third argument of printf must be a floating-point value to match the %6. 1f,
any floating-point expression can occur here.

The for statement is a loop, a generalization of the whil e. If you compare it to the
earlier whi | e, its operation should be clear. Within the parentheses, there are three
parts, separated by semicolons. Thefirst part, theinitialization

f ahr

0

17

18

is done once, before the | oop proper is entered. The second part is the
test or condition that controls the |oop

fahr <= 300
This condition is evaluated; if it is true, the body of the loop (here a single ptintf) is
executed. Then theincrement step

fahr = fahr + 20
is executed, and the condition re-evaluated. The loop terminates if the condition has
become false. As with the whi | e, the body of the loop can be a single statement or a
group of statements enclosed in braces. The initialization, condition and increment can
be any expressions.

The choice between whi | e and f or isarbitrary, based on which seemsclearer. Thefor is
usually appropriate for loops in which the initialization and increment are single
statements and logically related, since it is more compact than whi | e and it keeps the
loop control statementstogether in one place.

Exer cise 1-5. Modify the temperature conversion program to print thetablein reverse
order, that is, from 300 degreesto 0.

1.4 Symbolic Constants

A final observation before we leave temperature conversion forever. It's bad practice to
bury ““magic numbers’ like 300 and 20 in a program; they convey little information to
someone who might have to read the program later, and they are hard to change in a
systematic way. One way to deal with magic numbersisto give them meaningful names.
A #def i ne line defines a symbolic name or symbolic constant to be a particular string of
characters:

#def i ne name replacement list

Thereafter, any occurrence of name (not in quotes and not part of another name) will be
replaced by the corresponding replacement text. The name has the same form as a
variable name: a sequence of letters and digits that beginswith a letter. The replacement
text can be any sequence of characters; it isnot limited to numbers.

#i ncl ude <stdi o. h>

#define LONER O /* lower limt of table */
#defi ne UPPER 300 /[* upper limt */
#defi ne STEP 20 /* step size */

/* print Fahrenheit-Cel sius table */
mai n()

{

int fahr;

for (fahr = LONER; fahr <= UPPER; fahr = fahr + STEP)
printf("98d %.1f\n", fahr, (5.0/9.0)*(fahr-32));

}
The quantities LONER, UPPER and STEP are symbolic constants, not variables, so they do

not appear in declarations. Symbolic constant names are conventionally written in

19

upper case so they can ber readily distinguished from lower case variable names. Notice
that thereisno semicolon at the end of a#def i ne line.

1.5 Character Input and Output

We are going to consider a family of related programs for processing character data.
You will find that many programs are just expanded versions of the prototypes that we
discuss here.

The model of input and output supported by the standard library is very ssimple. Text
input or output, regardless of where it originates or where it goes to, is dealt with as
streams of characters. A text stream is a sequence of characters divided into lines; each
line consists of zero or more characters followed by a newline character. It is the
responsibility of the library to make each input or output stream confirm thismodel; the
C programmer using thelibrary need not worry about how lines are represented outside
the program.

The standard library provides several functions for reading or writing one character at
atime, of which get char and put char are the smplest. Each time it is called, get char
reads the next input character from a text stream and returnsthat asitsvalue. That is,
after

c = getchar();
the variable ¢ contains the next character of input. The characters normally come from
the keyboard; input from filesis discussed in Chapter 7.

Thefunction put char printsacharacter each timeit iscalled:

put char(c);
printsthe contents of the integer variable ¢ asa character, usually on the screen. Callsto
put char and printf may be interleaved; the output will appear in the order in which
the callsare made.

1.5.1 File Copying

Given get char and put char, you can write a surprising amount of useful code without
knowing anything more about input and output. The simplest exampleisa program that
copiesitsinput to itsoutput one character at atime:

read a character
while (charater is not end-of-file indicator)
out put the character just read
read a character

Converting thisinto C gives:
#incl ude <stdio. h>
/* copy input to output; 1st version */
mai n()
{

int c;

c = getchar();

20

while (c !'= EOF) {
put char(c);
c = getchar();
}
}
Therelational operator ! = means "not equal to'.

What appears to be a character on the keyboard or screen is of course, like everything
else, stored internally just as a bit pattern. The type char is specifically meant for
storing such character data, but any integer type can be used. We used i nt for a subtle
but important reason.

The problem is distinguishing the end of input from valid data. The solution is that
get char returnsadistinctive value when there is no more input, a value that cannot be
confused with any real character. This value is called ECF, for “end of file'". We must
declare ¢ to be a type big enough to hold any value that get char returns. We can't use
char since ¢ must be big enough to hold EOF in addition to any possible char . Therefore
weusei nt .

ECF is an integer defined in <stdio.h>, but the specific numeric value doesn't matter as
long as it is not the same as any char value. By using the symbolic constant, we are
assured that nothing in the program depends on the specific numeric value.

The program for copying would be written more concisely by experienced C
programmers. In C, any assignment, such as

c = getchar();
is an expression and has a value, which is the value of the left hand side after the
assignment. This means that a assignment can appear as part of a larger expression. If
the assignment of a character to c is put inside the test part of a whi | e loop, the copy
program can be written thisway:

#i ncl ude <stdi o. h>

/* copy input to output; 2nd version */

mai n()
o
Int c;
while ((c = getchar()) !'= EOF)

put char(c);
}
Thewhi | e gets a character, assignsit to ¢, and then tests whether the character wasthe

end-of-file signal. If it was not, the body of the whi | e is executed, printing the character.
The whil e then repeats. When the end of the input is finally reached, the while
terminates and so doesni n.

This version centralizes the input - there is now only one reference to get char - and
shrinks the program. The resulting program is more compact, and, once the idiom is
mastered, easier toread. You'll seethis style often. (It's possible to get carried away and
create impenetrable code, however, a tendency that wewill try to curb.)

21

The parentheses around the assignment, within the condition are necessary. The
precedence of ! = is higher than that of =, which meansthat in the absence of parentheses
therelational test ! = would be done befor e the assignment =. So the statement

c = getchar() !'= EOF
isequivalent to

¢ = (getchar() != EOF)
This hasthe undesired effect of setting c to 0 or 1, depending on whether or not the call
of get char returned end of file. (Moreon thisin Chapter 2.)
Exercsise 1-6. Verify that the expression get char () != EOFisOor 1.
Exercise 1-7. Writea program to print the value of ECF.

1.5.2 Character Counting

The next program counts characters; it issimilar to the copy program.
#i ncl ude <stdi o. h>

/* count characters in input; 1st version */

mai n()
{
| ong nc;
nc = 0;
whil e (getchar() != EOF)

++nc;
printf("%d\n", nc);
}
The statement

++NnC;

presents a new operator, ++, which means increment by one. You could instead write nc
= nc + 1but ++nc ismore concise and often more efficient. There is a corresponding
operator - - to decrement by 1. The operators ++ and - - can be either prefix operators
(++nc) or postfix operators (nc++); these two forms have different valuesin expressions,
as will be shown in Chapter 2, but ++nc and nc++ both increment nc. For the moment we
will will stick to the prefix form.

The character counting program accumulatesits count in a | ong variable instead of an
int. | ong integersare at least 32 bits. Although on some machines, i nt and | ong arethe
same size, on othersan i nt is 16 bits, with a maximum value of 32767, and it would take
relatively little input to overflow an i nt counter. The conversion specification % d tells
printf that the corresponding argument isal ong integer.

It may be possible to cope with even bigger numbersby using adoubl e (double precision
float). Wewill also use a for statement instead of a whi | e, toillustrate another way to
writetheloop.

#i ncl ude <stdi o. h>

/* count characters in input; 2nd version */

22

mai n()
doubl e nc;
for (nc = 0; gechar() != EOF;, ++nc)

printf("%o0f\n", nc);

printf uses% for both fl oat and doubl e; % 0f suppressesthe printing of the decimal
point and thefraction part, which iszero.

The body of this for loop is empty, because all the work is done in the test and
increment parts. But the grammatical rules of C require that a f or statement have a
body. Theisolated semicolon, called a null statement, isthereto satisfy that requirement.
Weput it on a separatelineto makeit visible.

Before we leave the character counting program, observe that if the input contains no
characters, thewhi | e or for test failson thevery first call to get char, and the program
produces zero, the right answer. Thisisimportant. One of the nice things about whi | e
and f or isthat they test at the top of the loop, before proceeding with the body. If there
is nothing to do, nothing is done, even if that means never going through the loop body.
Programs should act intelligently when given zero-length input. The while and for
statements help ensurethat programs do reasonable things with boundary conditions.

1.5.3 Line Counting

The next program counts input lines. As we mentioned above, the standard library
ensures that an input text stream appears as a sequence of lines, each terminated by a
newline. Hence, counting linesisjust counting newlines:

#i ncl ude <stdi o. h>

/* count lines in input */
mai n()
.

int c, nl

nl = 0;

while ((c = getchar()) !'= EOF)

if (c =="'\n")
++nl ;

printf("%l\n", nl);
}
The body of the whi | e now consists of an i f, which in turn controlsthe increment ++nl .

Theif statement tests the parenthesized condition, and if the condition istrue, executes
the statement (or group of statementsin braces) that follows. We have again indented to
show what is controlled by what.

The double equals sign == is the C notation for “"is equal to" (like Pascal's single = or
Fortran's . EQ). This symbol is used to distinguish the equality test from the single =
that C uses for assignment. A word of caution: newcomers to C occasionally write =
when they mean ==. Aswe will seein Chapter 2, theresult isusually a legal expression,
so you will get no war ning.

A character written between single quotes represents an integer value equal to the
numerical value of the character in the machin€'s character set. This is called a

23

character constant, although it is just another way to write a small integer. So, for
example, ' A" is a character constant; in the ASCII character set its value is 65, the
internal representation of the character A. Of course, ' A' isto be preferred over 65: its
meaning isobvious, and it isindependent of a particular character set.

The escape sequences used in string constants are also legal in character constants, so
"\n' stands for the value of the newline character, which is 10 in ASCII. You should
note carefully that ' \ n' isasingle character, and in expressionsisjust an integer; on the
other hand, '\ n' is a string constant that happens to contain only one character. The
topic of stringsversus charactersisdiscussed further in Chapter 2.

Exercise 1-8. Writea program to count blanks, tabs, and newlines.

Exercise 1-9. Writeaprogram to copy itsinput toitsoutput, replacing each string of one
or more blanks by a single blank.

Exercise 1-10. Writea program to copy itsinput to itsoutput, replacing each tab by\ t,
each backspace by \ b, and each backslash by \\ . Thismakestabs and backspacesvisible
in an unambiguous way.

1.5.4 Word Counting

Thefourth in our seriesof useful programs countslines, words, and characters, with the
loose definition that a word is any sequence of characters that does not contain a blank,
tab or newline. Thisisa bare-bonesversion of the UNIX program wc.

#i ncl ude <stdi o. h>

#define IN 1 /* inside a word */
#define OUT O /* outside a word */

/* count lines, words, and characters in input */
mai n()
{

int ¢, nl, nw, nc, state;

state = QUT;
nl = nw=nc = 0;
while ((c = getchar()) !'= EOF) {
++nc;
if (c =="'\n")
++nl ;
if (¢c==""1]] ¢c="\n"|] ¢ ="\t")
state = QUT;
else if (state == QUT) {
state = IN;
++nwW,

}

}
printf("%l % %\n", nl, nw, nc);
}
Every time the program encounters the first character of a word, it counts one more

word. The variable st at e records whether the program is currently in a word or not;
initially it is “"not in a word"', which is assigned the value out. We prefer the symbolic
constants | N and oUT to the literal values 1 and 0 because they make the program more
readable. In a program astiny asthis, it makes little difference, but in larger programs,

24

theincrease in clarity iswell worth the modest extra effort to write it this way from the
beginning. You'll also find that it's easier to make extensive changesin programs where
magic number s appear only as symbolic constants.

25
Theline

nl = nw=nc = 0;
sets all three variables to zero. Thisis not a special case, but a consequence of the fact
that an assignment is an expression with the value and assignments associated from
right to left. It'sasif we had written

nl = (nw=(nc =0));
Theoperator | | means OR, sotheline

if (c=="" 1] c=="\n" || ¢c="\t")

says if c isablank or c isanewlineor c isatab'. (Recall that the escape sequence\t is
a visible representation of the tab character.) Thereis a corresponding operator && for
AND; its precedence is just higher than || . Expressions connected by && or || are
evaluated left to right, and it is guaranteed that evaluation will stop as soon as the truth
or falsehood is known. If ¢ isa blank, thereisno need to test whether it isa newline or
tab, so these tests are not made. Thisisn't particularly important here, but is significant
in more complicated situations, aswe will soon see.

The example also shows an el se, which specifies an alternative action if the condition
part of ani f statementisfalse. Thegeneral formis

i f (expression)
stat ement ;
el se
st at ement ,

One and only one of the two statements associated with an i f - el se is performed. If the
expression is true, statement; is executed; if not, statement; is executed. Each statement
can be a single statement or several in braces. In the word count program, the one after
theel seisani f that controlstwo statementsin braces.

Exercise 1-11. How would you test the word count program? What kinds of input are
most likely to uncover bugsif thereareany?

Exercise 1-12. Writeaprogram that printsitsinput oneword per line.

1.6 Arrays

Let iswrite a program to count the number of occurrences of each digit, of white space
characters (blank, tab, newline), and of all other characters. This is artificial, but it
permitsustoillustrate several aspectsof C in one program.

There are twelve categories of input, so it is convenient to use an array to hold the
number of occurrences of each digit, rather than ten individual variables. Here is one
version of the program:

26

#i ncl ude <stdi o. h>

/* count digits, white space, others */
mai n()

int ¢, i, nwhite, nother;
int ndigit[10];

nwhite = nother = 0;
for (i =0; i < 10; ++i)
ndigit[i] = O;
while ((c = getchar()) != EOF)
if (c >>"'0" && c <="'9")
++ndigit[c-"0'];
elseif (¢ =""] ¢c=="\n" || ¢ =="\t")
++nwhi t e;
el se
++not her;

printf("digits =");

for (i =0; i < 10; ++i)
printf(" %", ndigit[i]);

printf(", white space = %, other = %\n",
nwhi te, nother);

}
The output of thisprogram on itself is

digits =9 300000001, white space = 123, other = 345
Thedeclaration

int ndigit[10];
declaresndi gi t to bean array of 10 integers. Array subscriptsalwaysstart at zeroin C,
sotheeementsarendigit[0], ndigit[1], ..., ndigit[9].Thisisreflected inthe
f or loopsthat initialize and print thearray.

A subscript can beany integer expression, which includesinteger variableslikei , and
integer constants.

This particular program relies on the properties of the character representation of the
digits. For example, the test

if (c >>"'0" & c <="'9")
determineswhether the character in c isadigit. If it is, thenumeric value of that digit is

c-'0
Thisworksonlyif'o', '1', ..., '9' haveconsecutiveincreasingvalues. Fortunately,
thisistruefor all character sets.

By definition, char sarejust small integers, so char variablesand constants ar e identical
tointsin arithmetic expressions. Thisis natural and convenient; for example c-' 0' is
an integer expression with a value between 0 and 9 corresponding to the character ' 0!

to' 9' storedin c, and thusavalid subscript for thearray ndi gi t .

The decision asto whether a character isa digit, white space, or something else is made
with the sequence

27

if (c >>"'0" && c <="'9")
++ndigit[{c-"0'];

elseif (¢ =""|] ¢c=="\n" || ¢ =="\t")
++nwhi t e;

el se
++not her;

The pattern

if (condition,)
st atenent ;

else if (conditiony)
st at enent »

el se
st at enent ,

occurs frequently in programs as a way to express a multi-way decision. The conditions
are evaluated in order from the top until some condition is satisfied; at that point the
corresponding statement part is executed, and the entire construction is finished. (Any
statement can be several statements enclosed in braces.) If none of the conditions is
satisfied, the statement after the final el se is executed if it is present. If thefinal el se
and statement are omitted, as in the word count program, no action takes place. There
can be any number of

el se if (condition)
Statement

groups between theinitial i f and thefinal el se.

Asa matter of style, it isadvisableto format this construction as we have shown; if each
i f wereindented past the previous el se, a long sequence of decisions would march off
theright side of the page.

The swi t ch statement, to be discussed in Chapter 4, provides another way to write a
multi-way branch that is particulary suitable when the condition is whether some
integer or character expression matches one of a set of constants. For contrast, we will
present aswi t ch version of thisprogram in Section 3.4.

Exercise 1-13. Writeaprogram to print a histogram of thelengths of wordsin itsinput.
It is easy to draw the histogram with the bars horizontal; a vertical orientation is more
challenging.

Exercise 1-14. Write a program to print a histogram of the frequencies of different
charactersin itsinput.

1.7 Functions

In C, a function is equivalent to a subroutine or function in Fortran, or a procedure or
function in Pascal. A function provides a convenient way to encapsulate some
computation, which can then be used without worrying about its implementation. With
properly designed functions, it is possible to ignore how a job is done; knowing what is
done is sufficient. C makes the sue of functions easy, convinient and efficient; you will

28

often see a short function defined and called only once, just because it clarifies some
piece of code.

So far we have used only functions like print f, get char and put char that have been
provided for us; now it's time to write a few of our own. Since C has no exponentiation
operator likethe ** of Fortran, let us illustrate the mechanics of function definition by
writing a function power (m n) toraise an integer mto a positive integer power n. That is,
the value of power (2, 5) is 32. This function is not a practical exponentiation routine,
since it handles only positive powers of small integers, but it's good enough for
illustration.(The standard library contains a function pow(x, y) that computesx”.)

Here is the function power and a main program to exercise it, so you can see the whole
structureat once.

#i ncl ude <stdio. h>
int power(int m int n);

/* test power function */
mai n()

int i;

for (i =0; i < 10; ++i)
printf("%l % %\n", i, power(2,i), power(-3,i));
return O;

}

/* power: raise base to n-th power; n >= 0 */
i nt power(int base, int n)

int i, p;

p =1

for (i =1; i <= n; ++i)
p = p * base;

return p;

}
A function definition hasthisform:

return-type function-nanme(paraneter declarations, if any)

decl arati ons
st at ement s

}

Function definitions can appear in any order, and in one source file or several, although
no function can be split between files. If the sour ce program appearsin several files, you
may have to say more to compile and load it than if it all appearsin one, but that is an
operating system matter, not a language attribute. For the moment, we will assume that
both functions are in the same file, so whatever you have learned about running C
programswill still work.

Thefunction power iscalled twice by mai n, in theline

printf("%l % %\n", i, power(2,i), power(-3,i));

29

Each call passes two arguments to power, which each time returns an integer to be
formatted and printed. In an expression, power (2,i) isan integer just as2 and i are.
(Not all functions produce an integer value; we will take thisup in Chapter 4.)

Thefirst line of power itself,

i nt power(int base, int n)
declares the parameter types and names, and the type of the result that the function
returns. The names used by power for its parameters are local to power, and are not
visible to any other function: other routines can use the same names without conflict.
Thisisalsotrueof thevariablesi and p: thei in power isunrelated tothei in mai n.

We will generally use parameter for a variable named in the parenthesized list in a
function. The terms formal argument and actual argument are sometimes used for the
same distinction.

The value that power computes is returned to nai n by the return: statement. Any
expression may follow r et ur n:

return expr essi on;
A function need not return a value, a return statement with no expression causes
control, but no useful value, to be returned to the caller, as does ““falling off the end" of
afunction by reaching the terminating right brace. And the calling function can ignore a
valuereturned by a function.

You may have noticed that thereisar et ur n statement at the end of nai n. Sincemai nisa
function like any other, it may return a value to its caller, which is in effect the
environment in which the program was executed. Typically, a return value of zero
implies normal termination; non-zero values signal unusual or erroneous ter mination
conditions. In the interests of simplicity, we have omitted r et ur n statements from our
mai n functions up to this point, but we will include them hereafter, as a reminder that
programs should return statusto their environment.

Thedeclaration

i nt power(int base, int n);
just before mai n says that power is a function that expects two i nt arguments and
returnsan i nt. This declaration, which is called a function prototype, has to agree with
the definition and uses of power . It isan error if the definition of a function or any uses
of it do not agreewith its prototype.

parameter names need not agree. Indeed, parameter names are optional in a function
prototype, so for the prototype we could have written

int power(int, int);
Wéll-chosen names ar e good documentation however, so we will often use them.

30

A note of history: the biggest change between ANSI C and earlier versions is how
functions are declared and defined. In the original definition of C, the power function
would have been written like this:

31

/* power: raise base to n-th power; n >= 0 */
/* (ol d-style version) */

power (base, n)

i nt base, n;

int i, p

p =1

for (i =1; i <= n; ++i)
p =p * base;

return p;

}
The parameters are named between the parentheses, and their types are declared before

opening the left brace; undeclared parameters are taken as int. (The body of the
function isthe same as before.)

Thedeclaration of power at the beginning of the program would have looked like this:

i nt power();
No parameter list was per mitted, so the compiler could not readily check that power was
being called correctly. Indeed, since by default power would have been assumed to
return ani nt, theentire declaration might well have been omitted.

The new syntax of function prototypes makes it much easier for a compiler to detect
errors in the number of arguments or their types. The old style of declaration and
definition still works in ANSI C, at least for a transition period, but we strongly
recommend that you use the new form when you have a compiler that supportsit.

Exercise 1.15. Rewrite the temperature conversion program of Section 1.2 to use a
function for conversion.

1.8 Arguments - Call by Value

One aspect of C functions may be unfamiliar to programmers who are used to some
other languages, particulary Fortran. In C, all function arguments are passed by
value." This means that the called function is given the values of its arguments in
temporary variables rather than the originals. This leads to some different properties
than are seen with ““call by reference’’ languages like Fortran or with var parametersin
Pascal, in which the called routine has access to the original argument, not a local copy.

Call by value is an asset, however, not a liability. It usually leads to more compact
programs with fewer extraneous variables, because parameters can be treated as
conveniently initialized local variables in the called routine. For example, here is a
version of power that makes use of this property.

/* power: raise base to n-th power; n >= 0; version 2 */
i nt power(int base, int n)
{

int p;

for (p =1, n>0; --n)
p =p * base;
return p;

32

The parameter n isused as a temporary variable, and is counted down (a f or loop that
runs backwards) until it becomes zero; there is no longer a need for the variablei .
Whatever is done to n inside power has no effect on the argument that power was
originally called with.

When necessary, it is possible to arrange for a function to modify a variable in a calling
routine. The caller must provide the address of the variable to be set (technically a
pointer to the variable), and the called function must declare the parameter to be a
pointer and access the variable indirectly through it. We will cover pointersin Chapter
5.

The story is different for arrays. When the name of an array is used as an argument, the
value passed to the function is the location or address of the beginning of the array -
thereisno copying of array elements. By subscripting this value, the function can access
and alter any argument of thearray. Thisisthetopic of the next section.

1.9 Character Arrays

The most common type of array in C isthe array of characters. To illustrate the use of
character arrays and functions to manipulate them, let's write a program that reads a
set of text linesand printsthelongest. The outlineissimple enough:

while (there's another line)
if (it's longer than the previous |ongest)
(save it)
(save its | ength)
print | ongest |ine

This outline makesit clear that the program divides naturally into pieces. One piece gets
anew line, another savesit, and therest controlsthe process.

Since things divide so nicely, it would be well to write them that way too. Accordingly,
let usfirst write a separate function get | i ne to fetch the next line of input. We will try
to make the function useful in other contexts. At the minimum, get | i ne hastoreturn a
signal about possible end of file; a more useful design would be to return the length of
the line, or zero if end of file is encountered. Zero is an acceptable end-of-file return
because it is never a valid line length. Every text line has at least one character; even a
line containing only a newline haslength 1.

When we find a line that is longer than the previous longest line, it must be saved
somewhere. This suggests a second function, copy, to copy the new line to a safe place.

Finally, we need a main program to control get | i ne and copy. Hereistheresult.

33

#i ncl ude <stdi o. h>
#def i ne MAXLI NE 1000 /* maxi mum input |line length */

int getline(char line[], int maxline);
voi d copy(char to[], char froni]);

/* print the longest input line */

mai n()
{
int |en; /* current line length */
i nt max; /* maxi mum | ength seen so far */
char | i ne[MAXLI NE] ; /* current input line */
char | ongest[MAXLINE]; /* |ongest |line saved here */
max = O;
while ((len = getline(line, MAXLINE)) > 0)
if (len > max) {
max = | en;
copy(l ongest, line);

if (max > 0) /* there was a line */
printf("%", |ongest);
return O;

}

/* getline: read a line into s, return length */
int getline(char s[],int lim

int ¢, i;

for (i=0; i <lim1l & (c=getchar())!=EOF && c!="\n"; ++i)

s[i] = c;

if (c =="'\n") {
s[i] = c;
++i

}

s[i] ="\0";

return iI;

}

/* copy: copy 'from into 'to'; assume to is big enough */
voi d copy(char to[], char fron])
{

int i;

i = 0;

whi | e ((to[i] = fronfi]) !'="\0")
++i

}
The functionsget | i ne and copy are declared at the beginning of the program, which we
assumeiscontained in onefile.

mai n and get | i ne communicate through a pair of arguments and a returned value. In
get | i ne, theargumentsaredeclared by theline

int getline(char s[], int Iim;
which specifiesthat the first argument, s, isan array, and the second, | i m isan integer.
The purpose of supplying the size of an array in a declaration isto set aside storage. The
length of an array s isnot necessary in get | i ne Sinceitssizeisset in mai n. get i ne uses
return to send a value back to the caller, just as the function power did. Thisline also

34

declaresthat getline returnsan int; since i nt isthe default return type, it could be
omitted.

Some functions return a useful value; others, like copy, are used only for their effect and
return no value. Thereturn type of copy isvoi d, which states explicitly that no valueis
returned.

get i ne putsthe character '\ 0' (the null character, whose value is zero) at the end of
the array it is creating, to mark the end of the string of characters. This conversion is
also used by the C language: when a string constant like

“hel | o\ n"
appearsin a C program, it isstored as an array of characters containing the characters
in the string and terminated with a' \ 0' to mark theend.

h|e|l|1l]|o |\n|\O

The s format specification in pri nt f expectsthe corresponding argument to bea string
represented in this form. copy also relies on the fact that its input argument is
terminated with a' \ 0' , and copiesthis character into the output.

It isworth mentioning in passing that even a program as small asthisone presents some
sticky design problems. For example, what should mai n do if it encountersalinewhich is
bigger than its limit? get | i ne works safely, in that it stops collecting when the array is
full, even if no newline has been seen. By testing the length and the last character
returned, mai n can determine whether the line was too long, and then cope as it wishes.
In theinterestsof brevity, we haveignored thisissue.

Thereisno way for a user of getline toknow in advance how long an input line might
be, so get | i ne checks for overflow. On the other hand, the user of copy already knows
(or can find out) how big the strings are, so we have chosen not to add error checking to
it.

Exercise 1-16. Revise the main routine of the longest-line program so it will correctly
print thelength of arbitrary long input lines, and as much as possible of the text.

Exercise 1-17. Write a program to print all input lines that are longer than 80
characters.

Exercise 1-18. Write a program to remove trailing blanks and tabs from each line of
input, and to delete entirely blank lines.

Exercise 1-19. Writeafunctionr ever se(s) that reversesthecharacter strings.Useitto
writeaprogram that reversesitsinput alineat atime.

1.10 External Variables and Scope

35

Thevariablesin mai n, such asl i ne, | ongest, €tc., are private or local to mai n. Because
they are declared within mai n, no other function can have direct access to them. The
sameistrue of thevariablesin other functions; for example, thevariablei ingetlineis
unrelated to the i in copy. Each local variable in a function comes into existence only
when the function is called, and disappear s when the function is exited. Thisiswhy such
variables are usually known as automatic variables, following terminology in other
languages. We will use the term automatic henceforth to refer to these local variables.
(Chapter 4 discusses the st ati ¢ storage class, in which local variables do retain their
values between calls.)

Because automatic variables come and go with function invocation, they do not retain
their values from one call to the next, and must be explicitly set upon each entry. If they
arenot set, they will contain garbage.

As an alternative to automatic variables, it is possible to define variables that are
external to all functions, that is, variables that can be accessed by name by any function.
(This mechanism is rather like Fortran COMMON or Pascal variables declared in the
outermost block.) Because external variables are globally accessible, they can be used
instead of argument lists to communicate data between functions. Furthermore, because
external variables remain in existence permanently, rather than appearing and
disappearing as functions are called and exited, they retain their values even after the
functionsthat set them havereturned.

An external variable must be defined, exactly once, outside of any function; this sets
aside storage for it. The variable must also be declared in each function that wants to
access it; this states the type of the variable. The declaration may be an explicit ext ern
statement or may be implicit from context. To make the discussion concrete, let us
rewrite the longest-line program with | i ne, | ongest , and max as external variables. This
requires changing the calls, declarations, and bodies of all threefunctions.

#i ncl ude <stdio. h>
#def i ne MAXLI NE 1000 /* maxi mum input |ine size */

i nt max; /* maxi mum | ength seen so far */
char | i ne[MAXLI NE] ; /* current input line */
char | ongest[MAXLINE]; /* longest |ine saved here */

int getline(void);
voi d copy(void);

/* print |longest input line; specialized version */
mai n()
{

int |en;

extern int max;

extern char |ongest[];

max = O;
while ((len = getline()) > 0)
if (len > max) {
max = | en;
copy();

if (max > 0) /* there was a line */
printf("%", |ongest);

return O;

36

37

/* getline: specialized version */
int getline(void)
{

int c, i;

extern char line[];

for (i =0; i < MAXLINE - 1

&& (c=getchar)) !'= EOF & c !'= "\n"'; ++i)
line[i] = c;
if (c =="\n") {
line[i] = c;
++i
}
[ine[i] = "'"\0";
return i;

}

/* copy: specialized version */
voi d copy(void)
{

int i;

extern char line[], longest[];

i = 0;

while ((longest[i] = line[i]) !'="\0")
++i

}
The external variables in mai n, get | i ne and copy are defined by the first lines of the
example above, which state their type and cause storage to be allocated for them.
Syntactically, external definitions are just like definitions of local variables, but since
they occur outside of functions, the variables are external. Before a function can use an
external variable, the name of the variable must be made known to the function; the
declaration isthe same as befor e except for the added keyword ext er n.

In certain circumstances, the ext er n declaration can be omitted. If the definition of the
external variable occurs in the source file before its use in a particular function, then
there is no need for an ext ern declaration in the function. The ext er n declarationsin
mai n, getline and copy are thus redundant. In fact, common practice is to place
definitions of all external variables at the beginning of the source file, and then omit all
extern declarations.

If the program isin several source files, and a variable is defined in filel and used in
file2 and file3, then extern declarations are needed in file2 and file3 to connect the
occurrences of the variable. The usual practice is to collect extern declarations of
variables and functionsin a separatefile, historically called a header, that isincluded by
#i ncl ude at the front of each source file. The suffix . h isconventional for header names.
The functions of the standard library, for example, are declared in headers like
<st di 0. h>. This topic is discussed at length in Chapter 4, and the library itself in
Chapter 7 and Appendix B.

Since the specialized versions of getline and copy have no arguments, logic would
suggest that their prototypes at the beginning of the file should be getline() and
copy() . But for compatibility with older C programsthe standard takes an empty list as
an old-style declaration, and turns off all argument list checking; theword voi d must be
used for an explicitly empty list. We will discussthisfurther in Chapter 4.

38

You should note that we are using the words definition and declaration carefully when
we refer to external variables in this section. Definition' refersto the place where the
variable is created or assigned storage; ~“declaration' refersto places where the nature
of thevariableis stated but no storageisallocated.

By the way, there is a tendency to make everything in sight an ext er n variable because
it appears to simplify communications - argument lists are short and variables are
always there when you want them. But external variables are always there even when
you don't want them. Relying too heavily on external variables is fraught with peril
since it leads to programs whose data connections are not all obvious - variables can be
changed in unexpected and even inadvertent ways, and the program is hard to modify.
The second version of the longest-line program is inferior to the first, partly for these
reasons, and partly because it destroys the generality of two useful functions by writing
into them the names of the variablesthey manipulate.

At this point we have covered what might be called the conventional core of C. With this
handful of building blocks, it's possible to write useful programs of considerable size,
and it would probably be a good idea if you paused long enough to do so. These exer cises
suggest programs of somewhat greater complexity than the onesearlier in thischapter.

Exercise 1-20. Write a program det ab that replaces tabsin the input with the proper
number of blanksto spaceto the next tab stop. Assume a fixed set of tab stops, say every
n columns. Should n beavariable or a symbolic parameter ?

Exercise 1-21. Writea program ent ab that replaces strings of blanks by the minimum
number of tabs and blanks to achieve the same spacing. Use the same tab stops as for
det ab. When either a tab or a single blank would suffice to reach a tab stop, which
should be given preference?

Exercise 1-22. Writeaprogramto " fold" longinput linesinto two or moreshorter lines
after the last non-blank character that occurs before the n-th column of input. Make
sure your program does something intelligent with very long lines, and if there are no
blanksor tabs befor e the specified column.

Exercise 1-23. Writeaprogram toremoveall commentsfrom a C program. Don't for get
to handle quoted strings and character constants properly. C commentsdon't nest.

Exercise 1-24. Write a program to check a C program for rudimentary syntax errors
like unmatched parentheses, brackets and braces. Don't forget about quotes, both single
and double, escape sequences, and comments. (This program is hard if you do it in full
generality.)

39

Chapter 2 - Types, Operators and
EXpressions

Variables and constants are the basic data objects manipulated in a program.
Declarations list the variables to be used, and state what type they have and perhaps
what their initial values are. Operators specify what is to be done to them. Expressions
combine variables and constants to produce new values. The type of an object
determines the set of values it can have and what operations can be performed on it.
These building blocks are the topics of this chapter.

The ANSI standard has made many small changes and additions to basic types and
expressions. There are now signed and unsi gned forms of all integer types, and
notations for unsigned constants and hexadecimal character constants. Hoating-point
operations may be donein single precision; thereisalso al ong doubletypefor extended
precision. String constants may be concatenated at compile time. Enumerations have
become part of the language, formalizing a feature of long standing. Objects may be
declared const, which prevents them from being changed. The rules for automatic
coer cions among arithmetic types have been augmented to handlethericher set of types.

2.1 Variable Names

Although we didn't say so in Chapter 1, there are some restrictions on the names of
variables and symbolic constants. Names are made up of letters and digits; the first
character must be a letter. Theunderscore ="' counts as a letter; it is sometimes useful
for improving the readability of long variable names. Don't begin variable names with
under scor e, however, since library routines often use such names. Upper and lower case
letters are distinct, so x and X are two different names. Traditional C practice isto use
lower casefor variable names, and all upper casefor symbolic constants.

At least the first 31 characters of an internal name are significant. For function names
and external variables, the number may be less than 31, because external names may be
used by assemblers and loaders over which the language has no control. For external
names, the standard guarantees uniqueness only for 6 characters and a single case.
Keywordslikeif, el se,int, float, etc., arereserved: you can't use them as variable
names. They must bein lower case.

It's wise to choose variable names that are related to the purpose of the variable, and
that are unlikely to get mixed up typographically. We tend to use short names for local
variables, especially loop indices, and longer namesfor external variables.

2.2 Data Types and Sizes

Thereareonly afew basic datatypesin C:
char asinglebyte, capable of holding one character in thelocal character set

int an integer, typically reflecting the natural size of integerson the host machine
float single-precision floating point

40

doubl e double-precision floating point

In addition, there are a number of qualifiers that can be applied to these basic types.
short and | ong apply to integers:

short int sh;
long int counter;

Theword i nt can be omitted in such declarations, and typically it is.

The intent is that short and | ong should provide different lengths of integers where
practical; i nt will normally be the natural size for a particular machine. short is often
16 bitslong, and i nt either 16 or 32 bits. Each compiler is free to choose appropriate
sizesfor itsown hardware, subject only to the therestriction that short sand ints are at
least 16 bits, 1 ongs are at least 32 bits, and short isno longer than i nt, which isno
longer than | ong.

The qualifier si gned or unsi gned may be applied to char or any integer. unsi gned
numbers are always positive or zero, and obey the laws of arithmetic modulo 2", wheren
is the number of bitsin the type. So, for instance, if char s are 8 bits, unsi gned char
variables have values between 0 and 255, while si gned char shave values between -128
and 127 (in a two's complement machine.) Whether plain char sare signed or unsigned
ismachine-dependent, but printable characters are always positive.

Thetypel ong doubl e specifies extended-precision floating point. As with integers, the
sizes of floating-point objects are implementation-defined; f1 oat, doubl e and | ong
doubl e could represent one, two or threedistinct sizes.

The standard headers <l i ni ts. h>and <f | oat . h> contain symbolic constants for all of
these sizes, along with other properties of the machine and compiler. These are
discussed in Appendix B.

Exercise 2-1. Write a program to determine the ranges of char, short,int,and | ong
variables, both si gned and unsi gned, by printing appropriate values from standard
headers and by direct computation. Harder if you compute them: determine the ranges
of the variousfloating-point types.

2.3 Constants

An integer constant like 1234 isani nt. Al ong constant iswritten with aterminal | (ell)
or L,asin 123456789L; an integer constant too big to fit into an i nt will also betaken as
a long. Unsigned constants are written with a terminal u or U, and the suffix ul or UL
indicatesunsi gned | ong.

Floating-point constants contain a decimal point (123. 4) or an exponent (le- 2) or both;
their typeisdoubl e, unless suffixed. The suffixesf or Findicateaf| oat constant; | or L
indicateal ong doubl e.

The value of an integer can be specified in octal or hexadecimal instead of decimal. A
leading 0 (zero) on an integer constant means octal; a leading 0x or 0X means
hexadecimal. For example, decimal 31 can be written as037 in octal and 0x1f or 0x1F in

41

hex. Octal and hexadecimal constants may also be followed by L to make them | ong and
Uto makethem unsi gned: OXFUL isan unsigned long constant with value 15 decimal.

A character constant isan integer, written asone character within single quotes, such
as ' x'. The value of a character constant is the numeric value of the character in the
machine's character set. For example, in the ASCI| character set the character constant
' 0' hasthe value 48, which isunrelated to the numeric value O. If we write' 0' instead
of a numeric value like 48 that depends on the character set, the program isindependent
of the particular value and easier to read. Character constants participate in numeric
operationsjust as any other integers, although they are most often used in comparisons
with other characters.

Certain characters can be represented in character and string constants by escape
sequences like\ n (newline); these sequences look like two characters, but represent only
one. In addition, an arbitrary byte-sized bit pattern can be specified by

"\ oo0'
where ooo isoneto three octal digits(0...7) or by

"\ xhh'
wherehh isoneor more hexadecimal digits(0...9, a...f, A ..F).Sowemightwrite

#defi ne VTAB '\ 013’ /* ASCI| vertical tab */
#defi ne BELL '\ 007’ /* ASCI| bell character */

or, in hexadecimal,

#defi ne VTAB '\ xb' /* ASCI| vertical tab */
#defi ne BELL '\ x7' /* ASCI| bell character */

The complete set of escape sequencesis

\a |alert (bell) character [\\ | backslash

\b | backspace \? | question mark

\f | formfeed '\" |singlequote

\n | newline \" | doublequote

\r |carriagereturn '\ 000 | octal number

'\t | horizontal tab '\ xhh | hexadecimal number
\v | vertical tab

The character constant '\0' represents the character with value zero, the null
character. '\ 0' is often written instead of 0 to emphasize the character nature of some
expression, but the numeric valueisjust 0.

A constant expression is an expression that involves only constants. Such expressions
may be evaluated at during compilation rather than run-time, and accordingly may be
used in any place that a constant can occur, asin

#def i ne MAXLI NE 1000
char |ine[MAXLI NE+1];

or

#define LEAP 1 /* in leap years */

42

int days[31+28+LEAP+31+30+31+30+31+31+30+31+30+31] ;
A string constant, or string literal, is a sequence of zero or more characters surrounded
by double quotes, asin

"I ama string"
or

"" /* the enpty string */
The quotes are not part of the string, but serve only to delimit it. The same escape
sequences used in character constants apply in strings; \ " represents the double-quote
character. String constants can be concatenated at compiletime:

"hello, " "world"
isequivalent to

"“hel l o, world"
Thisisuseful for splitting up long strings acr oss several sour celines.

Technically, a string constant is an array of characters. The internal representation of a
string has a null character '\ 0' at the end, so the physical storage required is one more
than the number of characters written between the quotes. This representation means
that there is no limit to how long a string can be, but programs must scan a string
completely to determineitslength. The standard library function strl en(s) returnsthe
length of its character string argument s, excluding the terminal '\ 0' . Here is our
version:

/* strlen: return length of s */
int strlen(char s[])

{

int i;

while (s[i] !'="\0")
++i

return i;

}
strl en and other string functionsaredeclared in the standard header <stri ng. h>.

Be careful to distinguish between a character constant and a string that contains a single
character: ' x' is not the same as "x". The former is an integer, used to produce the
numeric value of the letter x in the machine's character set. The latter is an array of
charactersthat contains one character (theletter x)anda'\ 0' .

Thereisoneother kind of constant, the enumeration constant. An enumeration isalist of
constant integer values, asin

enum bool ean { NO, YES };
The first name in an enumhas value 0, the next 1, and so on, unless explicit values are
specified. If not all values ar e specified, unspecified values continue the progression from
the last specified value, asthe second of these examples:

enum escapes { BELL = '"\a', BACKSPACE = '\b', TAB = "\t'
NEWLINE = "\n', VTAB = "\v', RETURN = "\r

s

enum months { JAN = 1, FEB, MAR, APR, MAY, JUN,
JUL, AUG, SEP, OCT, NOV, DEC };

43

/* FEB = 2, MAR = 3, etc. */
Names in different enumerations must be distinct. Values need not be distinct in the
same enumer ation.

Enumerations provide a convenient way to associate constant values with names, an
alternative to #defi ne with the advantage that the values can be generated for you.
Although variables of enumtypes may be declared, compilers need not check that what
you store in such a variable is a valid value for the enumeration. Nevertheless,
enumeration variables offer the chance of checking and so are often better than
#def i nes. In addition, a debugger may be able to print values of enumeration variables
in their symbolic form.

2.4 Declar ations

All variables must be declared before use, although certain declarations can be made
implicitly by content. A declaration specifies atype, and contains a list of one or more
variables of that type, asin

int |lower, upper, step;
char ¢, 1ine[1000];

Variables can be distributed among declarations in any fashion; the lists above could
well bewritten as

int | ower;
int upper;
int step;
char c;

char 1ine[1000];
The latter form takes more space, but is convenient for adding a comment to each
declaration for subsequent modifications.

A variable may also beinitialized in its declaration. If the name is followed by an equals
sign and an expression, the expression servesasan initializer, asin

char esc = "\\'
i nt i = 0;
i nt limt = MAXLI NE+1;

float eps = 1.0e-5;
If the variable in question is not automatic, the initialization is done once only,
conceptionally before the program starts executing, and the initializer must be a
constant expression. An explicitly initialized automatic variable is initialized each time
the function or block it isin is entered; the initializer may be any expression. External
and static variables are initialized to zero by default. Automatic variables for which is
no explicit initializer have undefined (i.e., garbage) values.

The qualifier const can be applied to the declaration of any variable to specify that its
value will not be changed. For an array, the const qualifier says that the elements will
not be altered.

const double e = 2.71828182845905;
const char nsg[] = "warning:

The const declaration can also be used with array arguments, to indicate that the
function does not changethat array:

44

int strlen(const char[]);
Theresult isimplementation-defined if an attempt ismadeto changeaconst .

2.5 Arithmetic Operators

The binary arithmetic operators are +, -, *, /, and the modulus operator % Integer
division truncates any fractional part. The expression

X %y
produces the remainder when x is divided by y, and thus is zero when y divides x

exactly. For example, a year is a leap year if it is divisible by 4 but not by 100, except
that yearsdivisible by 400 are leap years. Therefore

if ((year %4 == 0 & year % 100 !'= 0) || year % 400 == 0)
printf("%l is a |leap year\n", year);

el se
printf("%l is not a | eap year\n", year);

The %operator cannot be applied toafl oat or doubl e. Thedirection of truncation for /
and the sign of the result for %are machine-dependent for negative operands, asisthe
action taken on overflow or underflow.

The binary + and - operators have the same precedence, which is lower than the
precedence of *, / and % which is in turn lower than unary + and -. Arithmetic
operator s associate | eft to right.

Table 2.1 at the end of this chapter summarizes precedence and associativity for all
operators.

2.6 Relational and L ogical Operators

Therelational operatorsare

> >= < <=
They all have the same precedence. Just below them in precedence are the equality
operators:

Relational operators have lower precedence than arithmetic operators, so an expression
likei < lim1istakenasi < (1im1),aswould beexpected.

More interesting are the logical operators&& and | | . Expressions connected by && or | |
are evaluated left to right, and evaluation stops as soon as the truth or falsehood of the
result is known. Most C programs rely on these properties. For example, hereis a loop
from theinput function get I i ne that wewrotein Chapter 1:

for (i=0; i <lim1l & (c=getchar()) !'="'\n" && c !'= ECOF, ++i)
s[i] = c;
Before reading a new character it is necessary to check that thereisroom to store it in
thearray s, sothetesti < Iim 1 must bemadefirst. Moreover, if thistest fails, we must
not go on and read another character.

45

Similarly, it would be unfortunate if ¢ were tested against EOF before get char iscalled,;
thereforethe call and assignment must occur beforethe character in c istested.

The precedence of && is higher than that of ||, and both are lower than relational and
equality operators, so expressionslike

i <liml & (c=getchar()) !'='\n" && c != ECOF
need no extra parentheses. But since the precedence of ! = is higher than assignment,
parentheses are needed in

(c=getchar()) '="\n'
to achievethe desired result of assignment to ¢ and then comparison with' \ n' .

By definition, the numeric value of arelational or logical expression is1 if therelation is
true, and O if therelation isfalse.

The unary negation operator ! converts a non-zero operand into O, and a zero operand
in 1. A common useof ! isin constructionslike

if (!valid)
rather than

if (valid == 0)
It's hard to generalize about which form is better. Constructionslike ! val i d read nicely
(if not valid'), but more complicated ones can be hard to under stand.

Exercise 2-2. Writealoop equivalent tothef or loop above without using&&or | | .

2.7 Type Conversions

When an operator has operands of different types, they are converted to a common type
according to a small number of rules. In general, the only automatic conversions are
those that convert a ““narrower' operand into a “wider' one without losing
information, such as converting an integer into floating point in an expression like f +
i . Expressions that don't make sense, like using a f | oat asa subscript, are disallowed.
Expressions that might lose information, like assigning a longer integer type to a
shorter, or a floating-point type to an integer, may draw a warning, but they are not

illegal.

A char isjust a small integer, so char s may be freely used in arithmetic expressions.
This permits consider able flexibility in certain kinds of character transformations. One
is exemplified by this naive implementation of the function at oi , which convertsastring
of digitsinto its numeric equivalent.

/[* atoi: convert s to integer */
int atoi(char s[])

_O;
for (i = 0; s[i] >='0" && s[i] <= '9'; ++i)

46

n =10 * n + (s[i] - '0");
return n;

}
Aswediscussed in Chapter 1, the expression

s[i] - 'O
gives the numeric value of the character stored in s[i], becausethevaluesof '0',' 1",
etc., form a contiguous increasing sequence.

Another example of char toi nt conversion isthe function | ower, which maps a single
character to lower case for the ASCII character set. If the character isnot an upper case
letter, | ower returnsit unchanged.

/* lower: ~convert c to |ower case; ASCII only */
int lower(int c)
{
if (c >>"'A & c <="'2Z")
return c + "a'" - 'A;
el se
return c;
}
This works for ASCII because corresponding upper case and lower case letters are a
fixed distance apart as numeric values and each alphabet is contiguous -- there is
nothing but letters between A and z. This latter observation is not true of the EBCDIC

character set, however, so this code would convert morethan just lettersin EBCDIC.

The standard header <ct ype. h>, described in Appendix B, defines a family of functions
that provide tests and conversions that are independent of character set. For example,
the function t ol ower is a portable replacement for the function | ower shown above.
Similarly, the test

c>>"'0 & c <="'9
can bereplaced by

isdigit(c)
Wewill usethe<ct ype. h> functionsfrom now on.

There is one subtle point about the conversion of characters to integers. The language
does not specify whether variables of type char aresigned or unsigned quantities. When
achar isconverted toan i nt, can it ever produce a negative integer ? The answer varies
from machine to machine, reflecting differences in architecture. On some machines a
char whose leftmost bit is 1 will be converted to a negative integer (""sign extension').
On others, a char is promoted to an int by adding zeros at the left end, and thusis
always positive.

The definition of C guarantees that any character in the machine's standard printing
character set will never be negative, so these characterswill always be positive quantities
in expressions. But arbitrary bit patterns stored in character variables may appear to be
negative on some machines, yet positive on others. For portability, specify si gned or
unsi gned if non-character dataistobestored in char variables.

Relational expressionslike i > j and logical expressions connected by && and || are
defined to havevalue 1 if true, and O if false. Thusthe assignment

a7

d=c>"'0 & c <="'9
setsd to 1if ¢ isadigit, and O if not. However, functions like i sdi gi t may return any
non-zero value for true. In the test part of i f, whil e, for, etc., true" just means “non-
zero'', so thismakes no difference.

Implicit arithmetic conversions work much as expected. In general, if an operator like +
or * that takes two operands (a binary operator) has operands of different types, the
“lower" typeispromoted to the “"higher' type before the operation proceeds. The result
is of the integer type. Section 6 of Appendix A states the conversion rules precisely. If
therearenounsi gned operands, however, thefollowing informal set of ruleswill suffice:

If either operand isl ong doubl e, convert theother tol ong doubl e.
Otherwisg, if either operand isdoubl e, convert the other to doubl e.
Otherwise, if either operand isf | oat , convert the other tof | oat .
Otherwise, convert char and short toi nt.

Then, if either operand isl ong, convert the other tol ong.

Noticethat f| oat Sin an expression are not automatically converted to doubl e; thisisa
change from the original definition. In general, mathematical functions like those in
<mat h. h> will use double precision. Themain reason for usingf | oat istosavestoragein
large arrays, or, less often, to save time on machines where double-precision arithmetic
isparticularly expensive.

Conversion rules are more complicated when unsi gned operands are involved. The
problem is that comparisons between signed and unsigned values are machine-
dependent, because they depend on the sizes of the various integer types. For example,
supposethat i nt is16 bitsand | ong is 32 bits. Then - 1L < 1U, because 1U, which isan
unsi gned i nt,ispromotedtoasi gned | ong.But-1L > 1UL because- 1L ispromoted to
unsi gned | ong and thus appearsto be alarge positive number.

Conversions take place across assignments; the value of theright sideis converted to the
type of theleft, which isthetype of theresult.

A character is converted to an integer, either by sign extension or not, as described
above.

Longer integers are converted to shorter ones or to char s by dropping the excess high-
order bits. Thusin

int i;

char c;

i = c;

cC =1,
the value of c¢ is unchanged. This is true whether or not sign extension is involved.
Reversing the order of assignments might loseinformation, however.

If xisfloat andi isint,thenx =i andi = x both cause conversions; f| oat toi nt
causes truncation of any fractional part. When a doubl e isconverted to f | oat , whether
thevalueisrounded or truncated isimplementation dependent.

48

Since an argument of a function call is an expression, type conversion also takes place
when arguments are passed to functions. In the absence of a function prototype, char
and short become int, and fl oat becomes doubl e. This is why we have declared
function argumentsto bei nt and doubl e even when the function iscalled with char and
fl oat.

Finally, explicit type conversions can be forced (""coerced') in any expression, with a
unary operator called acast . In theconstruction

(type name) expression

the expression is converted to the named type by the conversion rules above. The precise
meaning of a cast isasif the expression were assigned to a variable of the specified type,
which is then used in place of the whole construction. For example, the library routine
sqrt expects a doubl e argument, and will produce nonsense if inadvertently handled
something else. (sqrt isdeclared in <mat h. h>.) Soif n isan integer, we can use

sqgrt ((doubl e) n)
to convert the value of n to doubl e before passing it to sqrt . Note that the cast produces
the value of n in the proper type; n itself is not altered. The cast operator hasthe same
high precedence as other unary operators, as summarized in the table at the end of this
chapter.

If arguments are declared by a function prototype, as the normally should be, the
declaration causes automatic coercion of any arguments when the function is called.
Thus, given afunction prototypefor sqrt:

doubl e sqgrt (doubl e)
the call

root2 = sqrt(2)
coer cestheinteger 2 into thedoubl e value 2. 0 without any need for a cast.

The standard library includes a portable implementation of a pseudo-random number
generator and a function for initializing the seed; the former illustratesa cast:

unsi gned long int next = 1;

/* rand: return pseudo-random i nteger on 0..32767 */
int rand(void)

{
next = next * 1103515245 + 12345;

return (unsigned int)(next/65536) % 32768,;
}

/* srand: set seed for rand() */
voi d srand(unsigned int seed)

{

}
Exercise 2-3. Write afunction ht oi (s), which converts a string of hexadecimal digits

(including an optional 0x or 0X) into its equivalent integer value. The allowable digitsare
0 through 9, a through f , and A through F.

next = seed,;

49

2.8 Increment and Decrement Operators

C provides two unusual operators for incrementing and decrementing variables. The
increment operator ++ adds 1 to its operand, while the decrement operator - - subtracts
1. We have frequently used ++ to increment variables, asin

if (c =="'\n")
++nl ;
The unusual aspect isthat ++ and - - may be used either as prefix operators (before the
variable, as in ++n), or postfix operators (after the variable: n++). In both cases, the
effect is to increment n. But the expression ++n increments n before its value is used,
while n++ incrementsn after its value has been used. This meansthat in a context where
thevalueisbeing used, not just the effect, ++n and n++ aredifferent. If nis5, then

X = n++;
setsx to 5, but
X = ++n;

sets x to 6. In both cases, n becomes 6. The increment and decrement operators can only
be applied to variables; an expression like (i +j) ++ isillegal.

In a context where no valueiswanted, just the incrementing effect, asin

if (c =="'\n")
nl ++;
prefix and postfix are the same. But there are situations where one or the other is
specifically called for. For instance, consider the function squeeze(s, c), which removes
all occurrences of the character ¢ from thestrings.

/* squeeze: delete all ¢ froms */

voi d squeeze(char s[], int c)
{
int i, j;
for (i =] =0; s[i] !'="\0"; i++)
if (s[i] !'= c)
s[j++] = s[i];
s[j] ="\0";

Each time a non-c occurs, it is copied into the current j position, and only then is j
incremented to beready for the next character. Thisisexactly equivalent to

Another example of a similar construction comes from the get | i ne function that we
wrotein Chapter 1, wherewe can replace

if (c =='\n") {
s[i] = c;
++i
}
by the mor e compact

if (c == '\n")

50
s[i++] = c;
Asathird example, consider the standard function strcat (s, t), which concatenatesthe
stringt totheend of strings. st rcat assumesthat thereisenough spacein s to hold the
combination. As we have written it, strcat returns no value; the standard library
version returnsa pointer totheresulting string.

/* strcat: concatenate t to end of s; s nust be big enough */
void strcat(char s[], char t[])

{

int i, j;

i :j = 0;

while (s[i] !'="\0") /* find end of s */
i ++;

while ((s[i++] = t[j++]) '='\0") /* copy t */

}
As each member is copied from t to s, the postfix ++ isapplied to both i and j to make

surethat they arein position for the next passthrough the loop.

Exercise 2-4. Writean alternativeversion of squeeze(s1, s2) that ddeteseach character
in s1 that matches any character in the string s2.

Exercise 2-5. Writethefunctionany(s1, s2),which returnsthefirst locationin astring
s1 where any character from the string s2 occurs, or -1 if s1 contains no characters
from s2. (The standard library function st r pbr k doesthe samejob but returnsa pointer
to thelocation.)

2.9 Bitwise Operators

C provides six operators for bit manipulation; these may only be applied to integral
operands, that is, char, short,int,and | ong, whether signed or unsigned.

& bitwise AND

| bitwiseinclusive OR

" bitwiseexclusive OR

<< |eft shift

>> right shift

~ one'scomplement (unary)

Thebitwise AND operator & isoften used to mask off some set of bits, for example

n=n&0177;
setsto zero all but thelow-order 7 bits of n.

The bitwise OR operator | isused toturn bitson:

X = X | SET_ON
setstoonein x thebitsthat are set to onein SET_ON.

51

The bitwise exclusive OR operator ~ sets a one in each bit position where its operands
have different bits, and zero wherethey arethe same.

One must distinguish the bitwise operators& and | from thelogical operators&&and| |,
which imply left-to-right evaluation of a truth value. For example, if x island y is 2,
thenx & yiszerowhilex && y isone.

The shift operators << and >> perform left and right shifts of their left operand by the
number of bit positions given by the right operand, which must be non-negative. Thusx
<< 2 shifts the value of x by two positions, filling vacated bits with zero; this is
equivalent to multiplication by 4. Right shifting an unsi gned quantity always fits the
vacated bits with zero. Right shifting a signed quantity will fill with bit signs
(Tarithmetic shift') on some machines and with 0-bits (" "logical shift'") on others.

The unary operator ~ yields the one's complement of an integer; that is, it converts each
1-bit into a 0-bit and vice versa. For example

X = x & ~077
setsthelast six bitsof x to zero. Notethat x & ~077 isindependent of word length, and is
thus preferableto, for example, x & 0177700, which assumesthat x isa 16-bit quantity.
The portable form involves no extra cost, since ~077 isa constant expression that can be
evaluated at compiletime.

As an illustration of some of the bit operators, consider the function get bi ts(x, p, n)
that returnsthe (right adjusted) n-bit field of x that begins at position p. We assume that
bit position 0 is at the right end and that n and p are sensible positive values. For
example, get bi t s(x, 4, 3) returnsthethreebitsin positions4, 3 and 2, right-adjusted.

/* getbits: get n bits fromposition p */
unsi gned getbits(unsigned x, int p, int n)

return (x >> (p+1-n)) & ~(~0 << n);
}
The expression x >> (p+1-n) movesthedesired field to theright end of theword. ~0 is

all 1-bits; shifting it left n positions with ~0<<n places zeros in the rightmost n bits;
complementing that with ~ makes a mask with onesin therightmost n bits.

Exercise 2-6. Write a function setbi ts(x, p, n, y) that returns x with the n bitsthat
begin at position p set to therightmost n bitsof y, leaving the other bitsunchanged.

Exercise 2-7. Writeafunctioni nvert (x, p, n) that returnsx with then bitsthat begin at
position p inverted (i.e., 1 changed into 0 and vice ver sa), leaving the other sunchanged.

Exercise 2-8. Write afunction ri ghtrot (x, n) that returns the value of the integer x
rotated to theright by n positions.

2.10 Assignment Operators and Expressions

An expression such as

52

in which the variable on the left side is repeated immediately on theright, can bewritten
in the compressed form

i += 2
Theoperator += iscalled an assignment operator.

Most binary operators (operators like + that have a left and right operand) have a
cor responding assignment oper ator op=, where op is one of

+ - * / % << >> & A |
If expri and expr, ar e expressions, then

eXpri op= expr:
isequivalent to

expri = (expri) op (expry)
except that expr; iscomputed only once. Notice the par entheses around expr:

X *=y +1
means

X =x* (y + 1)
rather than

X =x*y +1
As an example, the function bitcount counts the number of 1-bits in its integer
argument.

/* bitcount: count 1 bits in x */
i nt bitcount(unsigned x)

{
int b;
for (b =0;, x!=0; x >>=1)
if (x & 01)
b++;
return b;

}
Declaring the argument x to be an unsi gned ensures that when it is right-shifted,

vacated bits will be filled with zeros, not sign bits, regardless of the machine the
program isrun on.

Quite apart from conciseness, assgnment operators have the advantage that they
correspond better to the way people think. We say "add 2toi ' or “incrementi by 2",
not “take i, add 2, then put the result back in i'. Thus the expression i += 2is
preferabletoi = i +2.1n addition, for a complicated expression like

yyval [yypv[p3+p4] + yypv[pl]] += 2
the assignment operator makes the code easier to understand, since the reader doesn't
have to check painstakingly that two long expressions ar e indeed the same, or to wonder
why they're not. And an assignment operator may even help a compiler to produce
efficient code.

We have already seen that the assgnment statement has a value and can occur in
expressions; the most common exampleis

53

while ((c = getchar()) !'= EOF)

The other assignment operators (+=, - =, etc.) can also occur in expressions, although this
islessfrequent.

In all such expressions, the type of an assignment expression is the type of its left
operand, and the valueisthevalue after the assignment.

Exercise 2-9. In atwo'scomplement number system,x &= (x-1) deletestherightmost
1-bit in x. Explain why. Usethis observation to write a faster version of bi t count .

2.11 Conditional Expressions

The statements

if (a > b)
Z = a,
el se
z = b;
compute in z the maximum of a and b. The conditional expression, written with the
ternary operator “?:', provides an alternate way to write this and similar

constructions. In the expression

expri ? expra . exprs
the expression expr; isevaluated first. If it isnon-zero (true), then the expression exprz is
evaluated, and that is the value of the conditional expression. Otherwise exprs is
evaluated, and that isthe value. Only one of expr, and exprs isevaluated. Thusto set z to
the maximum of a and b,

=(a>b) ? a: b; /* z = max(a, b) */
It should be noted that the conditional expression isindeed an expression, and it can be
used wherever any other expression can be. If exprz and exprs are of different types, the
type of theresult is determined by the conversion rules discussed earlier in this chapter.
For example, if f isafl oat and n ani nt, then the expression

(n>0) ?2f :n
isof typef | oat regardlessof whether n ispositive.

Parentheses are not necessary around the first expression of a conditional expression,
since the precedence of ?: is very low, just above assignment. They are advisable
anyway, however, since they make the condition part of the expression easier to see.

The conditional expression often leads to succinct code. For example, thisloop printsn
elements of an array, 10 per line, with each column separated by one blank, and with
each line (including the last) terminated by a newline.

for (i = 0; i < n; i++4)
printf("9%d%", a[i], (i%0==9 || i==n-1) ? '\n" : ' ");
A newlineis printed after every tenth element, and after the n-th. All other elementsare
followed by one blank. This might look tricky, but it's more compact than the equivalent
i f-el se. Another good exampleis

printf("You have % items%s.\n", n, n==1 2?2 "" . "s");

54

Exercise 2-10. Rewrite the function | ower , which converts upper case lettersto lower
case, with a conditional expression instead of i f - el se.

2.12 Precedence and Order of Evaluation

Table 2.1 summarizes the rules for precedence and associativity of all operators,
including those that we have not yet discussed. Operator son the same line have the same
precedence; rows are in order of decreasing precedence, so, for example, *, /, and %all
have the same precedence, which is higher than that of binary + and - . The ~operator"
() refers to function call. The operators -> and . are used to access members of
structures; they will be covered in Chapter 6, along with si zeof (Size of an object).
Chapter 5 discusses * (indirection through a pointer) and & (address of an object), and
Chapter 3 discusses the comma oper ator.

| Operators /Associativity
O [->. | left toright
I~ 4+ oo+ - * (type) si zeof | right to left
% | left toright
+ - | left toright
‘<< >> \Ieft toright
‘< <= > >= \Iefttoright
== 1= | left toright
& | left toright
[~ | left toright
[| left toright
&8 | left toright
I | left toright
2 | right to left
‘: += = *= [= U &= "= | = <<= >>=\rightto|eft
[| left toright

Unary & +, -, and * have higher precedencethan the binary forms.
Table 2.1: Precedence and Associativity of Operators

Note that the precedence of the bitwise operators &, ~, and | fallsbelow == and ! =. This
impliesthat bit-testing expressionslike

if ((x & MASK) == 0) ...
must befully parenthesized to give proper results.

C, like most languages, does not specify the order in which the operands of an operator
areevaluated. (The exceptionsare&s&, | | ,?: ,and 7, '.) For example, in a statement like

x =f1(0) +90);

55

f may be evaluated before g or vice versa; thusif either f or g altersavariable on which
the other depends, x can depend on the order of evaluation. Intermediate results can be
stored in temporary variablesto ensurea particular sequence.

Similarly, the order in which function arguments are evaluated is not specified, so the
statement

printf("%l %l\n", ++n, power(2, n)); /* WNRONG */
can produce different results with different compilers, depending on whether n is
incremented beforepower iscalled. The solution, of course, istowrite

++n;

printf("%l %\n", n, power(2, n));
Function calls, nested assignment statements, and increment and decrement operators
cause “'side effects' - some variable is changed as a by-product of the evaluation of an
expression. I n any expression involving side effects, there can be subtle dependencies on
the order in which variables taking part in the expression are updated. One unhappy
situation istypified by the statement

af[i] = i++;

The question is whether the subscript is the old value of i or the new. Compilers can
interpret this in different ways, and generate different answers depending on their
interpretation. The standard intentionally leaves most such matters unspecified. When
side effects (assignment to variables) take place within an expression is left to the
discretion of the compiler, since the best order depends strongly on machine
architecture. (The standard does specify that all side effects on arguments take effect
before a function iscalled, but that would not help in thecall topri nt f above.)

The moral is that writing code that depends on order of evaluation is a bad
programming practice in any language. Naturally, it is necessary to know what thingsto
avoid, but if you don't know how they are done on various machines, you won't be
tempted to take advantage of a particular implementation.

56

Chapter 3 - Control Flow

The control-flow of a language specify the order in which computations are performed.
We have already met the most common control-flow constructionsin earlier examples;
herewe will complete the set, and be mor e precise about the ones discussed before.

3.1 Statements and Blocks

An expression such as x = oor i++or printf(...) becomesa statement when it is
followed by a semicolon, asin

X = 0;

i ++;

printf(...);
In C, the semicolon is a statement terminator, rather than a separator as it is in
languages like Pascal.

Braces { and } areused to group declarations and statements together into a compound
statement, or block, so that they are syntactically equivalent to a single statement. The
braces that surround the statements of a function are one obvious example; braces
around multiple statements after an i f, el se, whi |l e, or for areanother. (Variablescan
be declared inside any block; we will talk about thisin Chapter 4.) Thereisno semicolon
after theright bracethat endsa block.

3.2 If-Else

Thei f - el se statement isused to express decisions. Formally the syntax is

i f (expression)
stat ement ;
el se
st at ement ,

where the el se part is optional. The expression is evaluated; if it is true (that is, if
expression has a non-zero value), statement; is executed. If it isfalse (expression is zero)
and if thereisan el se part, statement; is executed instead.

Since an if tests the numeric value of an expression, certain coding shortcuts are
possible. The most obviousiswriting

i f (expression)
instead of

if (expression = 0)
Sometimesthisisnatural and clear; at other timesit can becryptic.

Because the el se part of an i f - el se is optional,there is an ambiguity when an else if
omitted from a nested i f sequence. This is resolved by associating the el se with the
closest previousel se-lessi f . For example, in

57

if (n>0)
if (a >b)
zZ = a;
el se
z = b;

the el se goesto theinner if, as we have shown by indentation. If that isn't what you
want, braces must be used to for ce the proper association:

if (n>0) {

if (a > D)

Z = a,

}
el se

z = b;

The ambiguity is especially perniciousin situationslikethis:

if (n>0)

for (i = 0; i < n; i++4)

if (s[i] > 0) {
printf("...");
return i;

el se } /* WRONG */
printf("error -- n is negative\n");
The indentation shows unequivocally what you want, but the compiler doesn't get the
message, and associatesthe el se with theinner i f . Thiskind of bug can be hard to find;
it'sagood ideato use braceswhen therearenested i f s.

By theway, notice that thereisa semicolon after z = ain

if (a >b)
zZ = a;
el se
z = b;

This is because grammatically, a statement followsthe i f, and an expression statement
like "z = a;" isalwaysterminated by a semicolon.

3.3 Else-If

The construction

i f (expression)
st at ement

else if (expression)
st at ement

else if (expression)
st at ement

else if (expression)
st at ement

el se
st at ement

occurs so often that it is worth a brief separate discussion. This sequence of i f
statements is the most general way of writing a multi-way decision. The expressions are
evaluated in order; if an expression istrue, the statement associated with it is executed,
and this terminates the whole chain. As always, the code for each statement is ether a
single statement, or a group of them in braces.

58

Thelast el se part handles the "none of the above' or default case where none of the
other conditions is satisfied. Sometimes there is no explicit action for the default; in that
casethetrailing

el se
st at enent

can be omitted, or it may be used for error checkingto catch an “'impossible’" condition.

To illustrate a three-way decision, here is a binary search function that decides if a
particular value x occursin the sorted array v. The elements of v must bein increasing
order. The function returns the position (a number between 0 and n- 1) if x occursin v,
and -1if not.

Binary search first compares the input value x to the middle element of thearray v. If x
is less than the middle value, searching focuses on the lower half of the table, otherwise
on the upper half. In either case, the next step isto compare x to the middle element of
the selected half. This process of dividing the range in two continues until the value is
found or therangeisempty.

/* binsearch: find x in v[0] <= v[1] <= ... <=v[n-1] */
int binsearch(int x, int v[], int n)

{
int low, high, md;

| ow = O;
high = n - 1;
while (low <= high) {
md = (lowthigh)/2;
if (x <v[md])
high = md + 1;
else if (x > v[md])
low = md + 1;
el se /* found match */
return md;
}
return -1; /* no match */
}
The fundamental decision iswhether x islessthan, greater than, or equal to the middle

element v[mi d] at each step; thisisanatural for el se-i f.

Exercise 3-1. Our binary search makestwo testsinsidetheloop, when onewould suffice
(at the price of more tests outside.) Write a version with only onetest inside the loop and
measur e the differencein run-time.

3.4 Switch

The swi t ch statement is a multi-way decision that tests whether an expression matches
one of anumber of constant integer values, and branches accordingly.

switch (expression) {
case const-expr: statements
case const-expr: statenments
default: statements

59

Each case islabeled by one or more integer-valued constants or constant expressions. | f
a case matches the expression value, execution starts at that case. All case expressions
must be different. The case labeled def aul t is executed if none of the other cases are
satisfied. A def aul t isoptional; if it isn't there and if none of the cases match, no action
at all takes place. Cases and the default clause can occur in any order.

In Chapter 1 we wrote a program to count the occurrences of each digit, white space,
and all other characters, using a sequenceof if ... else if ... else.Hereisthe
same program with aswi t ch:

#i ncl ude <stdi o. h>
main() /* count digits, white space, others */
int ¢, i, nwhite, nother, ndigit[10];

ot her = 0;
i 10; i ++)
] 0;

while ((c = getchar()) !'= EOF) {
switch (c¢) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
ndigit[c-'0"]++;
br eak;
case ' ':
case '\n':
case '\t':
nwhi t e++;
br eak;
defaul t:
not her ++;
br eak;

}

}

printf("digits =");

for (i =0; i < 10; i++)
printf(" %", ndigit[i]);

printf(", white space = %, other = %\n",
nwhi te, nother);

return O;

}
The br eak statement causes an immediate exit from theswi t ch. Because cases serve just
as labels, after the code for one case is done, execution falls through to the next unless
you take explicit action to escape. br eak and r et ur n are the most common ways to leave
aswitch. A break statement can also be used to force an immediate exit from whi | e,
f or, and do loops, aswill be discussed later in thischapter.

Falling through casesis a mixed blessing. On the positive side, it allows several casesto
be attached to a single action, as with the digitsin this example. But it also implies that
normally each case must end with a br eak to prevent falling through to the next. Falling
through from one case to another is not robust, being prone to disintegration when the
program is modified. With the exception of multiple labels for a single computation, fall-
throughs should be used sparingly, and commented.

60

Asa matter of good form, put a br eak after the last case (the def aul t here) even though
it's logically unnecessary. Some day when another case gets added at the end, this bit of
defensive programming will save you.

Exercise 3-2. Writeafunction escape(s, t) that converts characterslike newline and
tab into visible escape sequences like \n and \'t as it copies the string t to s. Use a
swi t ch. Write a function for the other direction as well, converting escape sequences
intothereal characters.

3.5 Loops - While and For

We have already encountered thewhi | e and f or loops. In

whi |l e (expression)
st at enent
the expression is evaluated. If it is non-zero, statement is executed and expression isre-
evaluated. This cycle continues until expression becomes zero, at which point execution
resumes after statement.

Thef or statement

for (expri; expr, exprs)
st at ement

isequivalent to

expr i;

while (expra) {
st at ement
expr s;

}
except for the behaviour of cont i nue, which isdescribed in Section 3.7.

Grammatically, the three components of a f or loop are expressions. Most commonly,
expri and exprs are assignments or function calls and expr; is a relational expression.
Any of the three parts can be omitted, although the semicolons must remain. If exprs or
exprsisomitted, it issimply dropped from the expansion. If thetest, expr,, isnot present,
it istaken as permanently true, so

for (;;) {

}
is an “infinite" loop, presumably to be broken by other means, such as a break or

return.

Whether tousewhi | e or f or islargely amatter of personal preference. For example, in

while ((c = getchar()) ==" " |] ¢ =="\n" || ¢ ="\t")
; /* skip white space characters */

thereisnoinitialization or re-initialization, so thewhi | e ismost natural.

61

The for is preferable when thereis a simple initialization and increment since it keeps

the loop control statements close together and visible at the top of the loop. Thisis most
obviousin

for (i = 0; i < n; i++4)

which is the C idiom for processing the first n elements of an array, the analog of the
Fortran DO loop or the Pascal f or. The analogy is not perfect, however, since the index
variable i retains its value when the loop terminates for any reason. Because the
components of the for are arbitrary expressions, for loops are not restricted to
arithmetic progressions. Nonetheless, it is bad style to force unrelated computations into
the initialization and increment of a for, which are better reserved for loop control
oper ations.

As a larger example, here is another version of atoi for converting a string to its
numeric equivalent. Thisoneis dlightly more general than the one in Chapter 2; it copes
with optional leading white space and an optional + or - sign. (Chapter 4 shows at of ,
which does the same conversion for floating-point numbers.)

The structure of the program reflectsthe form of the input:

skip white space, if any
get sign, if any
get integer part and convert it

Each step doesits part, and leaves thingsin a clean state for the next. The whole process
terminates on thefirst character that could not be part of a number.

#i ncl ude <ctype. h>

/[* atoi: convert s to integer; version 2 */
int atoi(char s[])

{

int i, n, sign;
for (i = 0; isspace(s[i]); i++) [* skip white space */
sign,: (s[i] =="'-") ?2 -1 . 1,
if (s[i] =="+" || s[i] =="-") [* skip sign */
i ++;
for (n =0; isdigit(s[i]); i++)
n=10* n + (s[i] - '0");

return sign * n;
}
The standard library provides a more elaborate function strtol for conversion of
stringstolongintegers; see Section 5 of Appendix B.

The advantages of keeping loop control centralized are even more obvious when there
are several nested loops. The following function is a Shell sort for sorting an array of
integers. The basic idea o this sorting algorithm, which was invented in 1959 by D. L.
Shell, isthat in early stages, far-apart elements are compared, rather than adjacent ones
as in simpler interchange sorts. This tends to eliminate large amounts of disorder
quickly, so later stages have lesswork to do. The interval between compared elementsis

62

gradually decreased to one, at which point the sort effectively becomes an adjacent
inter change method.

/* shellsort: sort v[O]...v[n-1] into increasing order */

void shellsort(int v[], int n)
{
int gap, i, j, tenp;
for (gap = n/2; gap > 0; gap /= 2)
for (i = gap; i < n; i++)
for (j=i-gap; j>=0 && v[j]>v[j+gap]; j-=gap) {
tenmp = v[j];

v[jl = v[j+gap];
} v[j+gap] = tenp;
}

There are three nested loops. The outermost controls the gap between compared
elements, shrinking it from n/ 2 by a factor of two each pass until it becomes zero. The
middle loop steps along the elements. The innermost loop compares each pair of
elements that is separated by gap and reverses any that are out of order. Since gap is
eventually reduced to one, all elements are eventually ordered correctly. Notice how the
generality of the for makes the outer loop fit in the same form as the others, even
though it isnot an arithmetic progression.

Onefinal C operator isthe comma ™, "', which most often findsusein thef or statement.
A pair of expressions separated by a comma is evaluated left to right, and the type and
value of the result are thetype and value of theright operand. Thusin afor statement, it
ispossible to place multiple expressionsin the various parts, for example to process two
indices in parallel. This is illustrated in the function rever se(s), which reverses the
string s in place.

#i ncl ude <string. h>

/* reverse: reverse string s in place */
void reverse(char s[])

int c, i, j

for (i =0, j =strlen(s)-1; i <j; i++ j--) {
c =sli];
s[i] = s[j]
s[j] = c;

}
}
The commas that separate function arguments, variables in declarations, etc., are not
comma oper ator s, and do not guar antee left to right evaluation.

Comma operators should be used sparingly. The most suitable uses are for constructs
strongly related to each other, asin the for loop in reverse, and in macros where a
multistep computation hasto be a single expression. A comma expression might also be
appropriate for the exchange of elementsin r ever se, where the exchange can be thought
of asingle operation:

j = strlen(s)-1; i <j; i++ j--)
s[i], s[i] =s[j], s[j] = ¢c;

63

Exercise 3-3. Writeafunctionexpand(s1, s2) that expandsshorthand notationslikea- z
in the string s1 into the equivalent complete list abc. .. xyz in s2. Allow for letters of
either case and digits, and be prepared to handle cases like a- b- ¢ and a- z0-9 and - a- z.
Arrangethat aleading or trailing - istaken literally.

3.6 Loops - Do-While

As we discussed in Chapter 1, thewhi | e and f or loops test the termination condition at
the top. By contrast, the third loop in C, the do- whi | e, tests at the bottom after making
each passthrough theloop body; the body is always executed at least once.

Thesyntax of thedo is

do
st at enent
whi |l e (expression);
The statement is executed, then expression is evaluated. If it is true, statement is
evaluated again, and so on. When the expression becomes false, the loop terminates.
Except for the sense of the test, do-whi |l e is equivalent to the Pascal r epeat - unti |
Sstatement.

Experience shows that do-whi | e is much less used than whi |l e and f or. Nonetheless,
from time to time it is valuable, as in the following function it oa, which @nverts a
number to a character string (the inverse of at oi). Thejob is dlightly more complicated
than might be thought at first, because the easy methods of generating the digits
generate them in the wrong order. We have chosen to generate the string backwards,
then reverseit.

/* itoa: convert n to characters in s */
void itoa(int n, char s[])

{

int i, sign;

if ((sign = n) <0) /* record sign */

n = -n; /* make n positive */
i = 0;
do { /* generate digits in reverse order */
s[i++] = n %10 + "0'; [/* get next digit */
} while ((n /= 10) > 0); /* delete it */
if (sign < 0)
s[i++] ="
s[i] = "\0";

reverse(s);

}
The do-whi | e IS necessary, or at least convenient, since at least one character must be

installed in the array s, even if n is zero. We also used braces around the single
statement that makes up the body of the do- whi | e, even though they are unnecessary, so
the hasty reader will not mistakethewhi | e part for the beginning of awhi | e loop.

Exercise 3-4. In atwo's complement number representation, our version of i t oa does
not handle the largest negative number, that is, the value of n equal to -(2"°'dsz-d),
Explain why not. Modify it to print that value correctly, regardless of the machine on
which it runs.

64

Exercise 3-5. Writethefunction i t ob(n, s, b) that convertstheinteger n into abaseb
character representation in the string s. In particular, i tob(n, s, 16) formats s as a
hexadecimal integer in s.

Exercise 3-6. Writea version of i t oa that acceptsthree argumentsinstead of two. The
third argument is a minimum field width; the converted number must be padded with
blankson theleft if necessary to make it wide enough.

3.7 Break and Continue

It is sometimes convenient to be able to exit from a loop other than by testing at the top
or bottom. The br eak statement provides an early exit from f or, whi | e, and do, just as
from switch. A break causes the innermost enclosing loop or switch to be exited
immediately.

Thefollowing function, t ri m removestrailing blanks, tabs and newlines from the end of
a string, using a br eak to exit from a loop when the rightmost non-blank, non-tab, non-
newlineisfound.

/* trim renove trailing blanks, tabs, newlines */
int trimchar s[])
{

int n;

for (n = strlen(s)-1; n >= 0; n--)
if (s[n] '=" " && s[n] !'="\t" && s[n] !="\n")
br eak;
s[n+l] = "\0";
return n;

}
strlen returns the length of the string. The for loop starts at the end and scans

backwar ds looking for the first character that is not a blank or tab or newline. The loop
is broken when oneisfound, or when n becomes negative (that is, when the entire string
has been scanned). You should verify that thisis correct behavior even when the string
isempty or containsonly white space characters.

The conti nue statement is related to break, but less often used; it causes the next
iteration of the enclosing f or, whi | e, or do loop to begin. In thewhi | e and do, this means
that the test part is executed immediately; in the for, control passes to the increment
step. The conti nue statement applies only to loops, not to swi t ch. A conti nue insidea
swi t ch inside a loop causesthe next loop iteration.

As an example, this fragment processes only the non-negative elementsin the array a;
negative values ar e skipped.

for (i = 0; i < n; i++4)
if (a[i] < 0) /* skip negative elenents */
conti nue;
. /* do positive elenments */
The continue statement is often used when the part of the loop that follows is

complicated, so that reversing atest and indenting another level would nest the program
too deeply.

65
3.8 Goto and labels

C providestheinfinitely-abusable got o statement, and labelsto branch to. Formally, the
got o statement is never necessary, and in practice it is almost always easy to write code
without it. We have not used got o in thisbook.

Nevertheless, there are a few situations where got osmay find a place. The most common
isto abandon processing in some deeply nested structure, such as breaking out of two or
mor e loops at once. The br eak statement cannot be used directly since it only exits from
theinnermost loop. Thus:

for (...)
for (...) {

if (disaster)
goto error,

error:
/* clean up the ness */

This organization is handy if the error-handling code is non-trivial, and if errors can
occur in several places.

A label has the same form as a variable name, and is followed by a colon. It can be
attached to any statement in the same function as the got o. The scope of a label isthe
entire function.

As another example, consider the problem o determining whether two arrays a and b
have an element in common. One possibility is

for (i =0; i < n; i++)
for (j =0; j < m j++)
if (afi] == Db[j])
goto found;
/* didn't find any common el enment */

foundr
/* got one: a[i] == b[j] */

Codeinvolving a got o can always be written without one, though perhaps at the price of
some repeated testsor an extra variable. For example, the array sear ch becomes

found = 0;
for (i =0; i <n &% !'found; i++)
for (j =0; j < m&& !found; j++)

if (afi] == Db[j])
found = 1;
i f (found)
/* got one: al[i-1] == b[j-1] */

else.”
/* didn't find any common el enent */

With a few exceptions like those cited here, code that relies on got o statements is
generally harder to understand and to maintain than code without got os. Although we

66

are not dogmatic about the matter, it does seem that got o statements should be used
rarely, if at all.

67

Chapter 4 - Functions and Program
Structure

Functions break large computing tasks into smaller ones, and enable people to build on
what others have done instead of starting over from scratch. Appropriate functions hide
details of operation from parts of the program that don't need to know about them, thus
clarifying thewhole, and easing the pain of making changes.

C has been designed to make functions efficient and easy to use; C programs generally
consist of many small functions rather than a few big ones. A program may residein one
or more sour ce files. Source files may be compiled separately and loaded together, along
with previously compiled functions from libraries. We will not go into that process here,
however, sincethe detailsvary from system to system.

Function declaration and definition is the area where the ANSI standard has made the
most changesto C. Aswe saw first in Chapter 1, it isnow possible to declare the type of
arguments when afunction is declared. The syntax of function declaration also changes,
so that declarations and definitions match. This makes it possible for a compiler to
detect many more errors than it could before. Furthermore, when arguments are
properly declared, appropriate type coercions ar e per formed automatically.

The standard clarifies the rules on the scope of names; in particular, it requires that
there be only one definition of each external object. Initialization is more general:
automatic arraysand structures may now beinitialized.

The C preprocessor has also been enhanced. New preprocessor facilities include a more
complete set of conditional compilation directives, a way to create quoted strings from
macr o arguments, and better control over the macro expansion process.

4.1 Basics of Functions

To begin with, let us design and write a program to print each line of its input that
contains a particular “pattern' or string of characters. (This is a special case of the
UNIX program gr ep.) For example, searching for the pattern of letters “oul d'' in the set
of lines

Ah Love! could you and | with Fate conspire
To grasp this sorry Schene of Things entire,
Wul d not we shatter it to bits -- and then
Re-nould it nearer to the Heart's Desirel!

will produce the output

Ah Love! could you and | with Fate conspire
Woul d not we shatter it to bits -- and then
Re-mould it nearer to the Heart's Desire!

Thejob falls neatly into three pieces:

while (there's another line)
if (the line contains the pattern)
print it

68

Although it's certainly possible to put the code for all of thisin mai n, a better way isto
use the structure to advantage by making each part a separate function. Three small
pieces are better to deal with than one big one, because irrelevant details can be buried
in the functions, and the chance of unwanted interactions is minimized. And the pieces
may even be useful in other programs.

“While there's another line'" is getline, a function that we wrote in Chapter 1, and
print it is print f, which someone has already provided for us. This means we need
only writearoutineto decide whether the line contains an occurrence of the pattern.

We can solve that problem by writing a function strindex(s,t) that returns the
position or index in the string s wherethe stringt begins, or -1 if s doesnot contain t .
Because C arrays begin at position zero, indexes will be zero or positive, and so a
negative value like - 1 is convenient for signaling failure. When we later need more
sophisticated pattern matching, we only have to replace st ri ndex; therest of the code
can remain the same. (The standard library provides a function st r st r that issimilar to
stri ndex, except that it returnsa pointer instead of an index.)

Given this much design, filling in the details of the program is straightforward. Here is
the whole thing, so you can see how the pieces fit together. For now, the pattern to be
searched for is a literal string, which is not the most general of mechanisms. We will
return shortly to a discussion of how to initialize character arrays, and in Chapter 5 will
show how to make the pattern a parameter that is set when the program isrun. Thereis
also a dightly different version of get | i ne; you might find it instructive to compareit to
theonein Chapter 1.

#i ncl ude <stdi o. h>
#defi ne MAXLI NE 1000 /* maxi muminput line length */

int getline(char line[], int max)
int strindex(char source[], char searchfor[]);

char pattern[] = "ould"; /* pattern to search for */
/* find all lines matching pattern */
mai n()

char 1ine[MAXLI NE] ;
int found = O;

while (getline(line, MAXLINE) > 0)
if (strindex(line, pattern) >= 0) {
printf("%", line);
f ound++;
}

return found;

}

/* getline: get lineinto s, return length */
int getline(char s[], int lim

. _
int c, i;
i = 0;
while (--1im> 0 && (c=getchar()) !'= EOF & c !'= "\n")

s[i++] = c;
if (c =="\n")

69

s[i++] = c;
s[i] = "\0";
return i;

}

/* strindex: return index of t ins, -1 if none */
int strindex(char s[], char t[])

{

int i, j, k;
for (i =0; s[i] !'="\0"; i++) {
for (j=i, k=0; t[K]!="\0" && s[j]==t[K]; j++ k++)
i f (i(>0&&t[k] ::'\0')
return i;
}
return -1;

}
Each function definition hastheform

return-type function-nane(argunment decl arations)

{

}
Various parts may be absent; a minimal function is

decl arati ons and statenents

dummy () {}
which does nothing and returns nothing. A do-nothing function like this is sometimes
useful as a place holder during program development. If the return type is omitted, i nt
isassumed.

A program is just a set of definitions of variables and functions. Communication
between the functions is by arguments and values returned by the functions, and
through external variables. The functions can occur in any order in the source file, and
the sour ce program can be split into multiplefiles, so long asno function is split.

Ther et ur n statement isthe mechanism for returning a value from the called function to
itscaller. Any expression can follow r et ur n:

return expr essi on;
The expression will be converted to the return type of the function if necessary.
Parentheses ar e often used around the expression, but they are optional.

The calling function is free to ignore the returned value. Furthermore, there need to be
no expression after ret urn; in that case, no value is returned to the caller. Control also
returnsto the caller with no value when execution ““falls off the end"" of the function by
reaching the closing right brace. It is not illegal, but probably a sign of trouble, if a
function returns a value from one place and no value from another. In any case, if a
function failstoreturn avalue, its “value'" iscertain to be garbage.

The pattern-searching program returns a status from nai n, the number of matches
found. Thisvalueisavailablefor use by the environment that called the program

The mechanics of how to compile and load a C program that resides on multiple source
files vary from one system to the next. On the UNIX system, for example, the cc

70

command mentioned in Chapter 1 does the job. Suppose that the three functions are
stored in threefilescalled mai n. ¢, getl i ne. ¢, and st ri ndex. c. Then the command

cc main.c getline.c strindex.c
compilesthethreefiles, placing theresulting object codein filesmai n. o, get | i ne. o, and
strindex. o, then loads them all into an executablefile called a. out . If thereisan error,
say in mai n. c, thefile can be recompiled by itself and theresult loaded with the previous
object files, with the command

cc main.c getline.o strindex.o
The cc command uses the “". ¢'" versus . o'' naming convention to distinguish source
filesfrom object files.

Exercise 4-1. Write the function strindex(s,t) which returns the position of the
rightmost occurrenceof t ins, or - 1 if thereisnone.

4.2 Functions Returning Non-integers

So far our examples of functions have returned either no value (voi d) or ani nt . What if
a function must return some other type? many numerical functions like sqgrt, si n, and
cos return doubl e; other specialized functions return other types. To illustrate how to
deal with this, let uswrite and use the function at of (s), which convertsthe string s to
its double-precision floating-point equivalent. at of if an extension of at oi , which we
showed versions of in Chapters 2 and 3. It handles an optional sign and decimal point,
and the presence or absence of either part or fractional part. Our version isnot a high-
quality input conversion routine; that would take more space than we care to use. The
standard library includes an at of ; the header <st dl i b. h> declaresit.

First, at of itself must declare the type of value it returns, since it is not i nt . The type
name precedesthe function name:

#i ncl ude <ctype. h>

/* atof: convert string s to double */
doubl e atof (char s[])
{

doubl e val, power;
int i, sign;

for (i = 0; isspace(s[i]); i++) [* skip white space */

sign = (s[i] =="'-") ? -1 : 1,
if (sfi] =="+" || s[i] =="-")
i ++;
for (val = 0.0; isdigit(s[i]); i++)
val = 10.0 * val + (s[i] - "0");
if (s[i] ==".")
i ++;
for (power = 1.0; isdigit(s[i]); i++) {
val = 10.0 * val + (s[i] - "0");

power *= 10;

}

return sign * val / power;

71

Second, and just asimportant, the calling routine must know that at of returnsa non-int
value. One way to ensure this is to declare at of explicitly in the calling routine. The
declaration is shown in this primitive calculator (barely adequate for check-book
balancing), which reads one number per line, optionally preceded with a sign, and adds
them up, printing the running sum after each input:

#i ncl ude <stdi o. h>
#defi ne MAXLI NE 100

/* rudi mentary cal cul ator */
mai n()

{
doubl e sum atof(char []):

char | i ne[MAXLI NE] ;
int getline(char line[], int max);

sum = 0;

while (getline(line, MAXLINE) > 0)
printf("\t%\n", sum += atof(line));

return O;

}
Thedeclaration

doubl e sum atof(char []);
says that sumis a doubl e variable, and that at of is a function that takes one char[]
argument and returnsadoubl e.

The function at of must be declared and defined consistently. If at of itself and the call
toit in mai n have inconsistent typesin the same sourcefile, the error will be detected by
the compiler. But if (as is more likely) at of were compiled separately, the mismatch
would not be detected, at of would return a doubl e that mai n would treat asan i nt , and
meaningless answer swould result.

In the light of what we have said about how declarations must match definitions, this
might seem surprising. Thereason a mismatch can happen isthat if thereisno function
prototype, a function isimplicitly declared by itsfirst appearance in an expression, such
as

sum += atof (i ne)
If a name that has not been previously declared occursin an expression and is followed
by a left parentheses, it is declared by context to be a function name, the function is
assumed to return an i nt, and nothing is assumed about its arguments. Furthermore, if
afunction declaration does not include arguments, asin

doubl e atof ();
that too istaken to mean that nothing isto be assumed about the arguments of at of ; all
parameter checking is turned off. This special meaning of the empty argument list is
intended to permit older C programs to compile with new compilers. But it's a bad idea
to use it with new C programs. If the function takes arguments, declare them; if it takes
no arguments, usevoi d.

Given at of , properly declared, we could write at oi (convert astringtoi nt) in terms of
it:

72

/* atoi: convert string s to integer using atof */
int atoi(char s[])

doubl e atof (char s[]);

return (int) atof(s);
}
Notice the structure of the declarations and the return statement. The value of the

expression in

return expr essi on;
is converted to the type of the function before the return istaken. Therefore, the value of
at of , a doubl e, is converted automatically to i nt when it appearsin thisreturn, since
the function at oi returnsan i nt. This operation does potentionally discard information,
however, so some compilers warn of it. The cast states explicitly that the operation is
intended, and suppresses any war ning.

Exercise 4-2. Extend at of to handle scientific notation of theform

123. 45e-6
where a floating-point number may be followed by e or E and an optionally signed
exponent.

4.3 External Variables

A C program consists of a set of external objects, which are either variables or
functions. The adjective “"external' is used in contrast to “‘internal'', which describes
the arguments and variables defined inside functions. External variables are defined
outside of any function, and are thus potentionally available to many functions.
Functions themselves are always external, because C does not allow functions to be
defined inside other functions. By default, external variables and functions have the
property that all references to them by the same name, even from functions compiled
separ ately, are references to the same thing. (The standard calls this property external
linkage) In this sense, external variables are analogous to Fortran COMM ON blocks or
variables in the outermost block in Pascal. We will see later how to define external
variables and functions that are visible only within a single sour ce file. Because external
variables are globally accessible, they provide an alternative to function arguments and
return values for communicating data between functions. Any function may access an
external variable by referring to it by name, if the name has been declar ed somehow.

If alarge number of variables must be shared among functions, external variables are
more convenient and efficient than long argument lists. As pointed out in Chapter 1,
however, this reasoning should be applied with some caution, for it can have a bad effect
on program structure, and lead to programs with too many data connections between
functions.

External variables are also useful because of their greater scope and lifetime. Automatic
variables are internal to a function; they come into existence when the function is
entered, and disappear when it is left. External variables, on the other hand, are
permanent, so they can retain values from one function invocation to the next. Thus if
two functions must share some data, yet neither calls the other, it is often most

73

convenient if the shared data is kept in external variables rather than being passed in
and out via arguments.

Let us examine this issue with a larger example. The problem is to write a calculator
program that provides the operators+, -, * and / . Because it is easier to implement, the
calculator will use reverse Polish notation instead of infix. (Reverse Polish notation is
used by some pocket calculators, and in languageslike Forth and Postscript.)

In reverse Polish notation, each operator followsits operands; an infix expression like

(1-2) * (4 +5)
isentered as

12-45+*
Parentheses ar e not needed; the notation is unambiguous as long as we know how many
oper ands each operator expects.

The implementation is ssimple. Each operand is pushed onto a stack; when an operator
arrives, the proper number of operands (two for binary operators) is popped, the
operator isapplied to them, and the result is pushed back onto the stack. In the example
above, for instance, 1 and 2 are pushed, then replaced by their difference, -1. Next, 4 and
5 are pushed and then replaced by their sum, 9. The product of -1 and 9, which is -9,
replaces them on the stack. The value on the top of the stack is popped and printed when
the end of theinput lineisencountered.

The structure of the program is thus a loop that performsthe proper operation on each
operator and operand asit appears:

whi l e (next operator or operand is not end-of-file indicator)
i f (nunber)
push it
else if (operator)
pop operands
do operation
push result
else if (newine)
pop and print top of stack
el se
error

The operation of pushing and popping a stack aretrivial, but by thetime error detection
and recovery are added, they are long enough that it is better to put each in a separate
function than to repeat the code throughout the whole program. And there should be a
separ ate function for fetching the next input operator or operand.

The main design decision that has not yet been discussed is where the stack is, that is,
which routines access it directly. On possibility isto keep it in mai n, and pass the stack
and the current stack position to the routines that push and pop it. But mai n doesn't
need to know about the variables that control the stack; it only does push and pop
operations. So we have decided to store the stack and its associated information in
external variablesaccessibleto the push and pop functionsbut not to mai n.

Trandating this outline into code is easy enough. If for now we think of the program as
existing in one sour cefile, it will look like this:

#i ncl udeS
#def i neS

function declarationsfor mai n

main() { ... }

external variablesfor push and pop

void push(double f) { ... }
doubl e pop(void) { ... }

int getop(char s[]) { ... }
routines called by get op

Later we will discuss how this might be split into two or mor e sour ce files.

74

The function nai n is aloop containing a big swi t ch on the type of operator or operand;
thisisamoretypical use of swi t ch than the one shown in Section 3.4.

#i ncl ude <stdi o. h>
#i nclude <stdlib.h> /* for at

of () */

#def i ne MAXOP 100 /* max size of operand or operator

#define NUMBER '0' [/* signal
int getop(char []):

voi d push(doubl e);

doubl e pop(void);

/* reverse Polish cal culator */

mai n()

.
Int type;
doubl e op2;

char s[MAXOP] ;

that a nunber was found

while ((type = getop(s)) != EOF) {

switch (type) {

case NUMBER:
push(at of (s));
br eak;

case '+':
push(pop() + pop())
br eak;

case '*':
push(pop() * pop())
br eak;

case
op2 = pop();
push(pop() - op2);
br eak;

case '/':
op2 = pop();
if (op2 !'=0.0)

push(pop() / op2);

el se
printf("error:

zero divisor\n");

*/
*/

75

br eak;
case '\n':
printf("\t% 8g\n", pop());
br eak;
defaul t:
printf("error: unknown command %s\n", s);
br eak;

}
}
return O;

}
Because + and * are commutative operators, the order in which the popped operands
are combined is irrelevant, but for - and / the left and right operand must be
distinguished. In

push(pop() - pop()); /* WRONG */
the order in which the two calls of pop are evaluated is not defined. To guarantee the
right order, it is necessary to pop the first value into a temporary variable as we did in
mai n.

#defi ne MAXVAL 100 /* maxi mum depth of val stack */

int sp = 0; /* next free stack position */
doubl e val [MAXVAL]; [/* value stack */

/* push: push f onto value stack */
voi d push(doubl e f)

{
if (sp < MAXVAL)
val [sp++] = f;
el se
printf("error: stack full, can't push %g\n", f);
}

/* pop: pop and return top value fromstack */
doubl e pop(voi d)
{

if (sp > 0)
return val[--sp];

el se {
printf("error: stack enpty\n");
return 0.0;

}
}

A variable is external if it is defined outside of any function. Thus the stack and stack
index that must be shared by push and pop are defined outside these functions. But nai n
itself does not refer to the stack or stack position - the representation can be hidden.

Let us now turn to the implementation of get op, the function that fetches the next
operator or operand. Thetask is easy. Skip blanks and tabs. If the next character is not
a digit or a hexadecimal point, return it. Otherwise, collect a string of digits (which
might include a decimal point), and return NUMBER, the signal that a number has been
collected.

#i ncl ude <ctype. h>

int getch(void);
voi d ungetch(int);

76

/* getop: get next character or numeric operand */
int getop(char s[])

int i, c;
while ((s[0] = ¢ = getch()) =="' " || ¢ == "\t")
s[1] = "\0';
if (lisdigit(c) & c I'=".")
return c; /* not a nunber */
i = 0;
if (isdigit(c)) /* collect integer part */

while (isdigit(s[++i] = ¢ = getch()))

if (c ==) /* collect fraction part */
while (isdigit(s[++i] = ¢ = getch()))

s[i] = '\0;

if (c !'= EOF)
ungetch(c);

return NUMBER

}
What are get ch and unget ch? It is often the case that a program cannot determine that

it hasread enough input until it hasread too much. One instanceis collecting characters
that make up a number: until the first non-digit is seen, the number isnot complete. But
then the program hasread one character too far, a character that it isnot prepared for.

The problem would be solved if it were possible to ““un-read" the unwanted character.
Then, every time the program reads one character too many, it could push it back on the
input, so therest of the code could behave as if it had never been read. Fortunately, it's
easy to simulate un-getting a character, by writing a pair of cooperating functions.
getch delivers the next input character to be considered; unget ch will return them
befor e reading new input.

How they work together is simple. unget ch puts the pushed-back characters into a
shared buffer -- a character array. get ch reads from the buffer if thereisanything else,
and calls get char if the buffer is empty. There must also be an index variable that
recordsthe position of the current character in the buffer.

Since the buffer and the index are shared by get ch and unget ch and must retain their
values between calls, they must be external to both routines. Thus we can write get ch,
unget ch, and their shared variables as:

#def i ne BUFSI ZE 100

char buf [BUFSI ZE] ; /* buffer for ungetch */
int bufp = 0; /* next free position in buf */

int getch(void) /* get a (possibly pushed-back) character */

return (bufp > 0) ? buf[--bufp] : getchar();
}

voi d ungetch(int c) /* push character back on input */

if (bufp >= BUFSI ZE)
printf("ungetch: too many characters\n");
el se

77

buf [buf p++] = c;
}
The standard library includes a function ungetch that provides one character of

pushback; we will discuss it in Chapter 7. We have used an array for the pushback,
rather than a single character, toillustrate a mor e gener al approach.

Exer cise 4-3. Given the basic framework, it's straightforward to extend the calculator.
Add themodulus (%) operator and provisionsfor negative numbers.

Exer cise 4-4. Add thecommandsto print thetop elementsof the stack without popping,
to duplicateit, and to swap the top two elements. Add a command to clear the stack.

Exercise 4-5. Add access to library functions like si n, exp, and pow. See <math.h> in
Appendix B, Section 4.

Exercise 4-6. Add commands for handling variables. (It's easy to provide twenty-six
variableswith single-letter names.) Add avariablefor the most recently printed value.

Exercise 4-7. Writearoutine unget s(s) that will push back an entire string onto the
input. Should unget s know about buf and buf p, or should it just useunget ch?

Exer cise 4-8. Suppose that there will never be more than one character of pushback.
Modify get ch and unget ch accordingly.

Exercise 4-9. Our get ch and unget ch do not handle a pushed-back EOF correctly. Decide
what their propertiesought to beif an EOF is pushed back, then implement your design.

Exercise 4-10. An alternate organization usesget | i ne toread an entireinput lineg; this
makes get ch and unget ch unnecessary. Revise the calculator to usethisapproach.

4.4 Scope Rules

The functions and external variables that make up a C program need not all be
compiled at the same time; the source text of the program may be kept in several files,
and previously compiled routines may be loaded from libraries. Among the questions of
interest are

How are declarations written so that variables are properly declared during
compilation?

How are declarations arranged so that all the pieces will be properly connected
when the program isloaded?

How ar e declarations or ganized so thereisonly one copy?

How are external variablesinitialized?

L et usdiscussthese topics by reorganizing the calculator program into several files. Asa
practical matter, the calculator is too small to be worth splitting, but it is a fine
illustration of theissuesthat arisein larger programs.

The scope of a name is the part of the program within which the name can be used. For
an automatic variable declared at the beginning of a function, the scope is the function
in which the name is declared. Local variables of the same name in different functions

78

are unrelated. The same is true of the parameters of the function, which are in effect
local variables.

The scope of an external variable or a function lasts from the point at which it is
declared to the end of the file being compiled. For example, if mai n, sp, val , push, and
pop aredefined in onefile, in the order shown above, that is,

main() { ... }

int sp = 0;
doubl e val [MAXVAL] ;

voi d push(double f) { ... }

doubl e pop(void) { ... }
then the variables sp and val may be used in push and pop ssimply by naming them; no
further declarations are needed. But these names are not visible in mai n, nor are push
and pop themselves.

On the other hand, if an external variableisto bereferred to beforeit is defined, or if it
is defined in a different source file from the one where it is being used, then an extern
declaration is mandatory.

It is important to distinguish between the declaration of an external variable and its
definition. A declaration announces the properties of a variable (primarily its type); a
definition also causes storageto be set aside. If thelines

int sp;
doubl e val [MAXVAL] ;

appear outside of any function, they define the external variables sp and val , cause
storage to be set aside, and also serve as the declarations for the rest of that source file.
On the other hand, thelines

extern int sp;
extern double val[];

declare for the rest of the source file that sp isan i nt and that val isa doubl e array
(whose size is determined elsewhere), but they do not create the variables or reserve
storagefor them.

There must be only one definition of an external variable among all the files that make
up the source program; other files may contain ext er n declarationsto accessit. (There
may also be ext er n declarations in the file containing the definition.) Array sizes must
be specified with the definition, but are optional with an ext er n declaration.

Initialization of an external variable goes only with the definition.

Although it is not a likely organization for this program, the functions push and pop
could be defined in one file, and the variables val and sp defined and initialized in
another. Then these definitions and declarations would be necessary to tie them
together:

infilel:

79

extern int sp;
extern double val[];

void push(double f) { ... }

doubl e pop(void) { ... }
infile2:

int sp = 0;

doubl e val [MAXVAL];
Because the ext er n declarationsin filel lie ahead of and outside the function definitions,
they apply to all functions; one set of declarations suffices for dl of filel. This same
organization would also bee needed if the definition of sp and val followed their usein
onefile.

4.5 Header Files

Let isnow consider dividing the calculator program into several sourcefiles, asit might
be is each of the components wer e substantially bigger. The mai n function would go in
one file, which we will call mai n. c; push, pop, and their variables go into a second file,
st ack. c; get op goesinto athird, get op. c. Finally, get ch and unget ch go into afourth
file, getch. c; we separate them from the others because they would come from a
separ ately-compiled library in arealistic program.

There is one more thing to worry about - the definitions and declar ations shared among
files. As much as possible, we want to centralize this, so that thereisonly one copy to get
and keep right asthe program evolves. Accordingly, we will place this common material
in a header file, cal c. h, which will be included as necessary. (The #i ncl ude line is
described in Section 4.11.) Theresulting program then lookslikethis:

calc.h

#define NUMBER '0?
void push(double);
double pop(veid);
int getop(char [1);
int getch(void);
void ungetch(int);

80

main.c getop.c stack.c
#include <stdic.h> #include <stdic.h> #include <stdic.h>
#include <stdlib.h> #include <ctype.h> #include "“calc.h"
#include "calc.h" #include "calc.h" #define MAXVAL 100
#define MAXOP 100 getop() { int sp = 0;
main(} { . double val [MAXVAL];
- } void push(double) {
} LI
double pop(veid) {
getch.c N
#inclunde <stdic.h> 1

#define BUFSIZE 100
char buf [BUFSIZE];
int bufp = 0;

int getch(void) {

}

void ungetch(int) {

}

Thereis a tradeoff between the desire that each file have access only to the information
it needs for its job and the practical reality that it is harder to maintain more header
files. Up to some moderate program size, it is probably best to have one header file that
contains everything that is to be shared between any two parts of the program; that is
the decison we made here. For a much larger program, more organization and more
header swould be needed.

4.6 Static Variables

The variables sp and val in st ack. c, and buf and buf p in getch. c, arefor the private
use of the functionsin their respective sour ce files, and are not meant to be accessed by
anything else. The st at i ¢ declaration, applied to an external variable or function, limits
the scope of that object to the rest of the source file being compiled. External static
thus provides a way to hide nameslike buf and buf p in theget ch- unget ch combination,
which must be external so they can be shared, yet which should not be visible to users of
get ch and unget ch.

81

Static storage is specified by prefixing the normal declaration with the word stati c. If
the two routines and the two variables are compiled in onefile, asin

static char buf[BUFSI ZE]; [/* buffer for ungetch */

static int bufp = 0; /* next free position in buf */
int getch(void) { ... }
voi d ungetch(int ¢c) { ... }

then no other routine will be able to access buf and buf p, and those names will not
conflict with the same names in other files of the same program. In the same way, the
variables that push and pop use for stack manipulation can be hidden, by declaring sp
and val tobestati c.

Theexternal st ati ¢ declaration ismost often used for variables, but it can be applied to
functions as well. Normally, function names are global, visible to any part of the entire
program. If a function is declared st ati c, however, its name is invisible outside of the
filein which it isdeclared.

The static declaration can also be applied to internal variables. Internal static
variables are local to a particular function just as automatic variables are, but unlike
automatics, they remain in existence rather than coming and going each time the
function is activated. This means that internal static variables provide private,
per manent storage within a single function.

Exercise4-11. Modify get op sothat it doesn't need to useunget ch. Hint: usean internal
static variable.

4.7 Register Variables

A regi st er declaration advises the compiler that the variablein question will be heavily
used. Theidea isthat regi ster variables are to be placed in machine registers, which
may result in smaller and faster programs. But compilersarefreetoignorethe advice.

Ther egi st er declaration lookslike

register int x;
regi ster char c;
and so on. The regi ster declaration can only be applied to automatic variables and to

theformal parametersof afunction. In thislater case, it lookslike

f(register unsigned m register |long n)

{

register int i;

}
In practice, there are restrictions on register variables, reflecting the realities of

underlying hardware. Only a few variables in each function may be kept in registers,
and only certain types are allowed. Excess register declarations are harmless, however,
since theword regi ster isignored for excess or disallowed declarations. And it is not
possible to take the address of a register variable (a topic covered in Chapter 5),

82

regardless of whether the variable is actually placed in a register. The specific
restrictionson number and typesof register variablesvary from machine to machine.

4.8 Block Structure

C isnot a block-structured language in the sense of Pascal or similar languages, because
functions may not be defined within other functions. On the other hand, variables can be
defined in a block-structured fashion within a function. Declarations of variables
(including initializations) may follow the left brace that introduces any compound
statement, not just the one that begins a function. Variables declared in this way hide
any identically named variables in outer blocks, and remain in existence until the
matching right brace. For example, in

if (n>0) {
int i; /* declare a new i */

for (i = 0; i < n; i++4)

}
the scope of the variable i isthe “true'" branch of the i f; thisi isunrelated to any i

outside the block. An automatic variable declared and initialized in a block isinitialized
each timetheblock isentered.

Automatic variables, including formal parameters, also hide external variables and
functions of the same name. Given the declarations

int x;
int vy;

f (doubl e x)
{

doubl e v;

}
then within the function f, occurrences of x refer to the parameter, which isa doubl e;

outsidef , they refer totheexternal i nt . Thesameistrueof thevariabley.

As a matter of style, it's best to avoid variable names that conceal names in an outer
scope; the potential for confusion and error istoo great.

4.9 Initialization

Initialization has been mentioned in passing many times so far, but always peripherally
to some other topic. This section summarizes some of the rules, now that we have
discussed the various stor age classes.

In the absence of explicit initialization, external and static variables are guaranteed to be
initialized to zero; automatic and register variables have undefined (i.e., garbage) initial
values.

Scalar variables may be initialized when they are defined, by following the name with an
equalssign and an expression:

83

int x = 1;
char squota = "\'";
l ong day = 1000L * 60L * 60L * 24L; /* mlliseconds/day */

For external and static variables, the initializer must be a constant expression; the
initialization is done once, conceptionally before the program begins execution. For
automatic and register variables, the initializer is not restricted to being a constant: it
may be any expression involving previously defined values, even function calls. For
example, the initialization of the binary search program in Section 3.3 could be written
as

int binsearch(int x, int v[], int n)

{

int low = O;
int high =n - 1;
int md;

}
instead of

int low, high, md;

| ow = O;

high = n - 1;
In effect, initialization of automatic variables are just shorthand for assignment
statements. Which form to prefer is largely a matter of taste. We have generally used
explicit assignments, because initializers in declarations are harder to see and further
away from the point of use.

An array may be initialized by following its declaration with a list of initializers enclosed
in braces and separated by commas. For example, to initialize an array days with the
number of daysin each month:

int days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
When the size of the array is omitted, the compiler will compute the length by counting
theinitializers, of which thereare 12 in this case.

If there are fewer initializersfor an array than the specified size, the others will be zero
for external, static and automatic variables. It is an error to have too many initializers.
There is no way to specify repetition of an initializer, nor to initialize an element in the
middle of an array without supplying all the preceding values as well.

Character arrays are a special case of initialization; a string may be used instead of the
braces and commas notation:

char pattern = "ould";
isashorthand for thelonger but equivalent

char pattern[] ={ "o, "u, "I, "d, "\0 },;
In thiscase, thearray sizeisfive (four charactersplustheterminating' \ 0').

4.10 Recursion

C functions may be used recursively; that is, a function may call itself either directly or
indirectly. Consider printing a number as a character string. As we mentioned before,

84

the digits are generated in the wrong order: low-order digits are available before high-
order digits, but they haveto be printed the other way around.

There are two solutions to this problem. On isto store the digitsin an array asthey are
generated, then print them in the reverse order, as we did with i t oa in section 3.6. The
alternative is a recursive solution, in which printd first calls itself to cope with any
leading digits, then prints the trailing digit. Again, this version can fail on the largest
negative number.

#i ncl ude <stdi o. h>

[* printd: print nin deciml */
void printd(int n)

if (n<0) {
putchar('-");
n=-n;

}
if (n/ 10)
printd(n / 10);
putchar(n % 10 + '0');
}
When a function calls itself recursively, each invocation gets a fresh set of all the

automatic variables, independent of the previous set. This in printd(123) the first
printd recelvestheargument n = 123. It passes 12 to a second pri nt d, which in turn
passes 1 to athird. Thethird-level printd printsi, then returnsto the second level. That
printd prints2, then returnstothefirst level. That one prints3 and ter minates.

Another good example of recursion is quicksort, a sorting algorithm developed by
C.A.R. Hoare in 1962. Given an array, one element is chosen and the others partitioned
in two subsets - those less than the partition element and those greater than or equal to
it. The same process is then applied recursively to the two subsets. When a subset has
fewer than two elements, it doesn't need any sorting; thisstopstherecursion.

Our version of quicksort is not the fastest possible, but it's one of the simplest. We use
the middle element of each subarray for partitioning.

/[* gsort: sort v[left]...v[right] into increasing order */
void gsort(int v[], int left, int right)

int i, last;
void swap(int v[], int i, int j);

if (left >=right) /* do nothing if array contains */

return; [* fewer than two el ements */
swap(v, left, (left + right)/2); /* nove partition elem*/
last = left; /* to v[0O] */
for (i =1left +1; i <=right; i++) [/[* partition */

if (v[i] < v[left])
swap(v, ++last, i);
swap(v, left, last); /* restore partition elem?*/
gsort(v, left, last-1);
gsort(v, last+1l, right);
}
We moved the swapping operation into a separate function swap because it occursthree

timesingsort.

85

/* swap: interchange v[i] and v[j] */
void swap(int v[], int i, int j)
{

int tenp;

temp = v[i];

vii] = v[j];

v[j] = tenp;

}
The standard library includesa version of gsor t that can sort objects of any type.

Recursion may provide no saving in storage, since somewhere a stack of the values being
processed must be maintained. Nor will it be faster. But recur sive code is mor e compact,
and often much easier to write and understand than the non-recursive equivalent.
Recursion is especially convenient for recursively defined data structures like trees, we
will see a nice examplein Section 6.6.

Exercise 4-12. Adapt theideasof printd towritearecursiveversion of i t oa; that is,
convert an integer into a string by calling arecursiveroutine.

Exercise 4-13. Writearecursiveversion of thefunctionr ever se(s) , which reversesthe
string s in place.

4.11 The C Preprocessor

C provides certain language facilities by means of a preprocessor, which is
conceptionally a separate first step in compilation. The two most frequently used
featuresare #i ncl ude, to include the contents of a file during compilation, and #def i ne,
to replace a token by an arbitrary sequence of characters. Other features described in
this section include conditional compilation and macroswith arguments.

4.11.1 File Inclusion

File inclusion makes it easy to handle collections of #defi nes and declarations (among
other things). Any sourceline of theform

#i ncl ude "fil ename"
or

#i ncl ude <fil ename>
is replaced by the contents of the file filename. If the filenameis quoted, searching for
the file typically begins where the source program was found,; if it is not found there, or
if the name is enclosed in < and >, searching follows an implementation-defined rule to
find thefile. An included file may itself contain #i ncl ude lines.

There are often several #i ncl ude lines at the beginning of a source file, to include
common #define statements and extern declarations, or to access the function
prototype declarations for library functions from headers like <stdi o. h>. (Strictly
speaking, these need not be files; the details of how headers are accessed are
implementation-dependent.)

#i ncl ude is the preferred way to tie the declarations together for a large program. It
guarantees that all the source files will be supplied with the same definitions and

86

variable declarations, and thus eliminates a particularly nasty kind of bug. Naturally,
when an included fileis changed, all filesthat depend on it must be recompiled.

4.11.2 Macro Substitution

A definition hastheform

#def i ne name repl acenment text

It calls for a macro substitution of the smplest kind - subsequent occurrences of the
token nane will be replaced by the replacement text. The namein a #def i ne hasthe same
form as a variable name; the replacement text is arbitrary. Normally the replacement
text is the rest of the line, but a long definition may be continued onto several lines by
placing a \ at the end of each line to be continued. The scope of a hame defined with
#defi ne is from its point of definition to the end of the source file being compiled. A
definition may use previous definitions. Substitutions are made only for tokens, and do
not take place within quoted strings. For example, if YES is a defined name, there would
be no substitution in printf (" YES") or in YESVAN.

Any name may be defined with any replacement text. For example

#define forever for (;;) [* infinite | oop */
definesanew word, f or ever, for an infinite loop.

It is also possible to define macros with arguments, so the replacement text can be
different for different calls of the macro. Asan example, define a macro called max:

#define max(A, B) ((A > (B) ? (A : (B))
Although it looks like a function call, a use of max expands into in-line code. Each
occurrence of a formal parameter (here A or B) will be replaced by the corresponding
actual argument. Thustheline

X = max(p+q, r+s);

will bereplaced by theline

x = ((p+q) > (r+s) ? (p*q) : (r+s));
So long as the arguments are treated consistently, this macro will serve for any data
type; thereis no need for different kinds of nmax for different data types, as there would
bewith functions.

If you examine the expansion of nax, you will notice some pitfalls. The expressions are
evaluated twice; thisis bad if they involve side effects like increment operators or input
and output. For instance

mex(i++, j++) /* VRONG */
will increment the larger twice. Some car e also hasto be taken with parentheses to make
surethe order of evaluation ispreserved; consider what happenswhen the macro

#define square(x) x * x [* WRONG */
isinvoked assquare(z+1).

87

Nonetheless, macros are valuable. One practical example comes from <stdi o. h>, in
which get char and put char are often defined as macros to avoid the run-time over head
of a function call per character processed. The functionsin <ct ype. h> are also usually
implemented as macr os.

Names may be undefined with #undef, usually to ensure that a routine is really a
function, not a macro:

#undef getchar

int getchar(void) { ... }
Formal parameters are not replaced within quoted strings. If, however, a parameter
name is preceded by a # in thereplacement text, the combination will be expanded into a
quoted string with the parameter replaced by the actual argument. This can be
combined with string concatenation to make, for example, a debugging print macro:

#define dprint(expr) printf(#expr " = %\ n", expr)
When thisisinvoked, asin

dprint(x/y)
the macroisexpanded into

printf("x/y" " = &\n", x/y);
and the strings ar e concatenated, so the effect is

printf("x/y = &\n", x/y);
Within the actual argument, each " isreplaced by \" and each\ by \\, sotheresultisa
legal string constant.

The preprocessor operator ## provides a way to concatenate actual arguments during
macro expansion. If a parameter in the replacement text is adjacent to a ##, the
parameter isreplaced by the actual argument, the ## and surrounding white space are
removed, and the result is re-scanned. For example, the macro past e concatenates its
two arguments:

#define paste(front, back) front ## back
SO past e(nane, 1) createsthetoken nanel.

Therulesfor nested uses of ## are arcane; further details may befound in Appendix A.

Exercise 4-14. Defineamacroswap(t, x, y) that interchangestwo argumentsof typet .
(Block structurewill help.)

4.11.3 Conditional I nclusion

It is possible to control preprocessing itself with conditional statements that are
evaluated during preprocessing. This provides a way to include code selectively,
depending on the value of conditions evaluated during compilation.

The #i f line evaluates a constant integer expression (which may not include si zeof
casts, or enumconstants). If the expression is non-zero, subsequent lines until an #endi f

88

or #el i f or #el se areincluded. (The preprocessor statement #el i f islikeel se-if.) The
expression def i ned(name) in a#i f islif thenamehasbeen defined, and O otherwise.

For example, to make sure that the contents of a file hdr. h are included only once, the
contents of thefile are surrounded with a conditional like this:

#if !defined(HDR)
#defi ne HDR

/* contents of hdr.h go here */

#endi f
The first inclusion of hdr. h defines the name HDR; subsequent inclusions will find the
name defined and skip down to the #endif. A similar style can be used to avoid
including filesmultipletimes. If thisstyleis used consistently, then each header can itself
include any other headers on which it depends, without the user of the header having to
deal with the inter dependence.

This sequence tests the name SYSTEMto decide which version of a header toinclude:

#i f SYSTEM == SYSV
#define HDR "sysv. h"
#el i f SYSTEM == BSD
#defi ne HDR "bsd. h"
#el i f SYSTEM == MSDOS
#defi ne HDR "nmsdos. h"
#el se
#defi ne HDR "defaul t. h"
#endi f
#i ncl ude HDR

The#i f def and #i f ndef linesare specialized formsthat test whether a nameis defined.
Thefirst example of #i f above could have been written

#i f ndef HDR
#defi ne HDR

/* contents of hdr.h go here */

#endi f

89

Chapter 5 - Pointers and Arrays

A pointer isavariable that containsthe address of a variable. Pointersare much used in
C, partly because they are sometimes the only way to express a computation, and partly
because they usually lead to more compact and efficient code than can be obtained in
other ways. Pointers and arrays are closely related; this chapter also explores this
relationship and shows how to exploit it.

Pointers have been lumped with the got o statement as a marvelous way to create
impossible-to-under stand programs. Thisis certainly true when they are used car elessly,
and it is easy to create pointers that point somewhere unexpected. With discipline,
however, pointers can also be used to achieve clarity and simplicity. This is the aspect
that wewill try toillustrate.

The main change in ANSI C is to make explicit the rules about how pointers can be
manipulated, in effect mandating what good programmers already practice and good
compilers already enforce. In addition, the type voi d * (pointer to voi d) replaces char
* astheproper typefor ageneric pointer.

5.1 Pointers and Addr esses

Let us begin with a ssmplified picture of how memory is organized. A typical machine
has an array of consecutively numbered or addressed memory cells that may be
manipulated individually or in contiguous groups. One common situation is that any
byte can be a char, a pair of one-byte cells can be treated as a short integer, and four
adjacent bytesform al ong. A pointer isa group of cells (often two or four) that can hold
an address. So if c isa char and p isa pointer that pointsto it, we could represent the

situation thisway:
PL;f"’ﬂ
JA (T

Theunary operator & givesthe address of an object, so the statement

p = &c;
assigns the address of ¢ to the variable p, and p issaid to “"point to'" c. The & operator
only applies to objectsin memory: variables and array elements. It cannot be applied to
expressions, constants, or r egi st er variables.

The unary operator * is the indirection or dereferencing operator; when applied to a
pointer, it accesses the object the pointer pointsto. Supposethat x and y areintegersand
i pisapointer toi nt . Thisartificial sequence shows how to declare a pointer and how to
use&and *:

90

int x =1, yv =2, z[10];

int *ip; /[* ipis a pointer to int */
ip = &; /* ip now points to x */

y = *ip; /[* y is now 1 */

Ip = 0; / x is now O */

ip = &[0]; /* ip now points to z[O] */

The declaration of x, y, and z are what we've seen all along. The declaration of the
pointer i p,

int *ip;
isintended as a mnemonic; it says that the expression *i p isan i nt. The syntax of the
declaration for a variable mimics the syntax of expressionsin which the variable might
appear. Thisreasoning appliesto function declarations aswell. For example,

doubl e *dp, atof(char *);
says that in an expression *dp and atof (s) have values of doubl e, and that the
argument of at of isapointer tochar.

You should also note the implication that a pointer is constrained to point to a particular
kind of object: every pointer points to a specific data type. (There is one exception: a
“pointer to voi d'"' is used to hold any type of pointer but cannot be dereferenced itself.
WE'll comeback toit in Section 5.11.)

Ifi p pointstotheinteger x, then *i p can occur in any context wherex could, so

*Ip = *ip + 10;
increments*i p by 10.

The unary operators * and & bind more tightly than arithmetic operators, so the
assignment

y =*ip +1
takeswhatever i p pointsat, adds 1, and assignstheresult toy, while

*ip +=1
incrementswhat i p pointsto, asdo

++*i p
and

(*ip)++
The parentheses are necessary in this last example; without them, the expression would
increment i p instead of what it points to, because unary operators like * and ++
associateright to left.

Finally, since pointers are variables, they can be used without dereferencing. For
example, if i g isanother pointer toi nt,

iq=1ip
copiesthe contentsof i p intoi g, thusmakingi g point to whatever i p pointed to.

91
5.2 Pointers and Function Arguments

Since C passes arguments to functions by value, there is no direct way for the called
function to alter a variable in the calling function. For instance, a sorting routine might
exchange two out-of-order arguments with a function called swap. It is not enough to
write

swap(a, b);
wheretheswap function is defined as

void swap(int x, int y) [/* WRONG */
int tenp;

emp = x;

< x ~

}
Because of call by value, swap can't affect the arguments a and b in the routine that

called it. The function above swapscopies of a and b.

The way to obtain the desired effect is for the calling program to pass pointers to the
valuesto be changed:

swap(&, &b);
Since the operator & produces the address of a variable, &a is a pointer to a. In swap
itself, the parameters are declared as pointers, and the operands ar e accessed indirectly
through them.

void swap(int *px, int *py) [/* interchange *px and *py */

Int tenp

tenp = *px;
*px = *py;
*py = tenp;

Pictorially:

92

in caller:
b: .
“\.
R
™
a: ..
o
.
N
in swap:
PX: | e
_'_F._,.H-"'
P¥: | o

Pointer arguments enable a function to access and change objects in the function that
called it. As an example, consider a function geti nt that performs free-format input
conversion by breaking a stream of charactersinto integer values, one integer per call.
getint hastoreturn thevalueit found and also signal end of file when thereisno more
input. These values have to be passed back by separate paths, for no matter what value
isused for EOF, that could also bethe value of an input integer.

One solution isto have getint return the end of file status as its function value, while
using a pointer argument to store the converted integer back in the calling function.
Thisisthe scheme used by scanf aswell; see Section 7.4.

Thefollowing loop fillsan array with integersby callstogeti nt :

int n, array[SIZE], getint(int *);

for (n = 0; n < SIZE & getint(&array[n]) != ECF, n++)

Each call setsarray[n] to the next integer found in the input and incrementsn. Notice
that it is essential to passthe address of array[n] togetint.Otherwisethereisno way
for geti nt to communicate the converted integer back tothecaller.

Our version of geti nt returns ECF for end of file, zero if the next input isnot a number,
and a positive valueif theinput containsavalid number.

#i ncl ude <ctype. h>

93

int getch(void);
voi d ungetch(int);

/* getint: get next integer frominput into *pn */
int getint(int *pn)

. _
int c, sign;
whil e (isspace(c = getch())) /* skip white space */
i f (iisdigit(c) &% ¢ '= EOF && c ="+ && c !'="-") {
ungetch(c); /* it is not a nunmber */
return O;
}
sign = (¢ =="'-") ? -1: 1,
if (c=="+ |] c ="-")
c = getch();
for (*pn = 0; isdigit(c), ¢ = getch())
*pn = 10 * *pn + (¢ - '0");
*pn *= sign;
if (c !'= EOF)
ungetch(c);
return c;
}

Throughout getint, *pn isused asan ordinary i nt variable. We have also used get ch
and unget ch (described in Section 4.3) so the one extra character that must be read can
be pushed back onto theinput.

Exercise 5-1. As written, getint treats a + or - not followed by a digit as a valid
representation of zero. Fix it to push such a character back on theinput.

Exercise 5-2. Write get f| oat, the floating-point analog of geti nt. What type does
get fl oat return asitsfunction value?

5.3 Pointers and Arrays

In C, there is a strong relationship between pointers and arrays, strong enough that
pointers and arrays should be discussed simultaneously. Any operation that can be
achieved by array subscripting can also be done with pointers. The pointer version will
in general befaster but, at least to the uninitiated, somewhat harder to understand.

Thedeclaration

int a[10];
defines an array of size 10, that is, a block of 10 consecutive objects named a[0], a[1],
.al 9] .

alo] al[1] a[9]

94

Thenotation a[i] referstothei -th element of thearray. If pa isa pointer to an integer,
declared as

int *pa;
then the assignment

pa = &a[0];
setspa to point to element zero of a; that is, pa containsthe address of a[0] .

Pa:

r—

N

alo]

Now the assignment

X = *pa;
will copy the contentsof a[0] intox.

If pa pointsto a particular element of an array, then by definition pa+1 pointsto the next
element, pa+i pointsi elements after pa, and pa-i pointsi elementsbefore. Thus, if pa
pointstoal 0],

*(patl)
referstothe contentsof a[1], pa+i istheaddressof a[i], and *(pa+i) isthecontents of
a[i].

pa: pa+l: pat2:

N

alo]

Theseremarks aretrue regardless of the type or size of the variablesin the array a. The
meaning of “"adding 1to a pointer," and by extension, all pointer arithmetic, isthat pa+1
pointsto the next object, and pa+i pointstothei -th object beyond pa.

95

The correspondence between indexing and pointer arithmetic is very close. By
definition, the value of a variable or expression of type array is the address of element
zero of thearray. Thusafter the assignment

pa = &a[0];
pa and a have identical values. Since the name of an array is a synonym for the location
of theinitial element, the assignment pa=&a[0] can also bewritten as

pa = a;
Rather more surprising, at first sight, is the fact that a referenceto a[i] can also be
written as *(a+i). In evaluating a[i], C converts it to *(a+i) immediately; the two
forms are equivalent. Applying the operator & to both parts of this equivalence, it
follows that &[i] and a+i are also identical: a+i is the address of the i -th element
beyond a. Asthe other side of this coin, if pa isa pointer, expressions might useit with a
subscript; pa[i] is identical to *(pa+i). In short, an array-and-index expression is
equivalent to onewritten asa pointer and offset.

Thereis one difference between an array name and a pointer that must be kept in mind.
A pointer isavariable, so pa=a and pa++ arelegal. But an array nameisnot a variable;
constructionslikea=pa and a++ areillegal.

When an array name is passed to a function, what is passed is the location of the initial
element. Within the called function, this argument is a local variable, and so an array
name parameter is a pointer, that is, a variable containing an address. We can use this
fact to writeanother version of st r | en, which computesthelength of a string.

/[* strlen: return length of string s */
int strlen(char *s)

{

int n;

for (n =0; *s I="\0", s++)
n++;
return n;

}
Since s is a pointer, incrementing it is perfectly legal; s++ has no effect on the character

string in the function that called st r| en, but merely incrementsstr| en's private copy of
the pointer. That meansthat callslike

strlen("hello, world"); /* string constant */
strlen(array); /* char array[100]; */
strlen(ptr); /* char *ptr; */

all work.

Asformal parametersin afunction definition,

char s[];
and

char *s;
are equivalent; we prefer the latter because it says more explicitly that the variableisa
pointer. When an array nameis passed to a function, the function can at its convenience

96

believe that it has been handed either an array or a pointer, and manipulate it
accordingly. It can even use both notationsif it scems appropriate and clear.

It ispossible to pass part of an array to a function, by passing a pointer to the beginning
of thesubarray. For example, if aisan array,

f(&a[2])
and

f (a+2)
both passto the function f the address of the subarray that startsat a[2] . Within f, the
parameter declaration can read

f(int arr[]) { ... }
or

f(int *arr) { ... }
So asfar asf isconcerned, the fact that the parameter refersto part of alarger array is
of no consequence.

If oneis sure that the elements exidt, it is also possible to index backwardsin an array;
p[-1], p[-2], and so on are syntactically legal, and refer to the elements that
immediately precede p[0] . Of course, it isillegal to refer to objects that are not within
thearray bounds.

5.4 Address Arithmetic

If p isa pointer to some element of an array, then p++ increments p to point to the next
element, and p+=i increments it to point i elements beyond where it currently does.
These and similar constructions are the ssmplesformsof pointer or addressarithmetic.

C is consistent and regular in its approach to address arithmetic; its integration of
pointers, arrays, and address arithmetic is one of the strengths of the language. Let us
illustrate by writing a rudimentary storage allocator. There are two routines. Thefirst,
al | oc(n), returns a pointer to n consecutive character positions, which can be used by
the caller of al | oc for storing characters. The second, af ree(p), releases the storage
thus acquired so it can be re-used later. The routines are “"rudimentary'' because the
callsto af ree must bemadein the opposite order tothecallsmadeon al | oc. That is, the
storage managed by all oc and afree is a stack, or last-in, first-out. The standard
library provides analogous functions called nalloc and free that have no such
restrictions; in Section 8.7 we will show how they can be implemented.

The easiest implementation isto have al | oc hand out pieces of a large character array
that we will call al | ocbuf. Thisarray isprivateto al | oc and af r ee. Since they deal in
pointers, not array indices, no other routine need know the name of the array, which can
be declared st ati c in the source file containing al | oc and af r ee, and thus beinvisible
outside it. In practical implementations, the array may well not even have a name; it
might instead be obtained by calling mal | oc or by asking the operating system for a
pointer to some unnamed block of storage.

The other information needed is how much of al | ocbuf has been used. We use a
pointer, called al | ocp, that points to the next free element. When al | oc isasked for n

97

characters, it checksto seeif thereis enough room left in al | ocbuf . If SO, al | oc returns
the current value of al | ocp (i.e., the beginning of the free block), then incrementsit by n
to point to the next free area. If thereisno room, al | oc returns zero. af ree(p) merely
setsal l ocp top if pisinsideal | ocbuf

before call to alloc:

allocp: ~
allocbnf:
-« 11 use > - free
after call to allec:
allocp: ~
allocbnf:
-~ 11 use > free —»

#defi ne ALLOCSI ZE 10000 /* size of avail abl e space */

static char allocbuf[ALLOCSI ZE]; /* storage for alloc */
static char *allocp = allocbuf; /* next free position */

char *alloc(int n) /[* return pointer to n characters */

if (allocbuf + ALLOCSIZE - allocp >=n) { [/* it fits */
allocp += n;
return allocp - n; /* old p */

} else /* not enough room */
return O;

}

void afree(char *p) [/* free storage pointed to by p */

{
if (p >= allocbuf & p < allocbuf + ALLOCSI ZE)

allocp = p;

}
In general a pointer can be initialized just as any other variable can, though normally

the only meaningful values are zero or an expression involving the address of previously
defined data of appropriatetype. The declaration

static char *allocp = all ocbuf;
defines al | ocp to be a character pointer and initializes it to point to the beginning of
al | ocbuf , which isthe next free position when the program starts. This could also have
been written

static char *allocp = &allochuf[0];
sincethearray nameisthe address of the zeroth element.

Thetest

if (allocbuf + ALLOCSIZE - allocp >=n) { [/* it fits */

98

checks if there's enough room to satisfy a request for n characters. If thereis, the new
valueof al I ocp would be at most one beyond the end of al | ocbuf . If therequest can be
satisfied, al | oc returns a pointer to the beginning of a block of characters (notice the
declaration of the function itself). If not, al | oc must return some signal that thereisno
space left. C guarantees that zero is never a valid address for data, so a return value of
zer o can be used to signal an abnormal event, in this case no space.

Pointers and integers are not interchangeable. Zero is the sole exception: the constant
zero may be assigned to a pointer, and a pointer may be compared with the constant
zero. The symbolic constant NULL is often used in place of zero, as a mnemonic to
indicate more clearly that this is a special value for a pointer. NULL is defined in
<st di 0. h>. Wewill useNULL henceforth.

Testslike

if (allocbuf + ALLOCSIZE - allocp >=n) { [/* it fits */
and

if (p >= allocbuf & p < allocbuf + ALLOCSI ZE)
show several important facets of pointer arithmetic. First, pointers may be compared
under certain circumstances. If p and g point to members of the same array, then
relationslike==,1=, <, >=, etc., work properly. For example,

p<q
is true if p points to an earlier element of the array than g does. Any pointer can be
meaningfully compared for equality or inequality with zero. But the behavior is
undefined for arithmetic or comparisons with pointers that do not point to members of
the same array. (There is one exception: the address of the first element past the end of
an array can beused in pointer arithmetic.)

Second, we have already observed that a pointer and an integer may be added or
subtracted. The construction

p +n

means the address of the n-th object beyond the one p currently pointsto. Thisistrue
regardless of the kind of object p pointsto; n isscaled according to the size of the objects
p points to, which is determined by the declaration of p. If an int is four bytes, for
example, thei nt will be scaled by four.

Pointer subtraction isalso valid: if p and g point to elements of the same array, and p<q,
then g- p+1 isthe number of elementsfrom p to g inclusive. Thisfact can be used towrite
yet another version of st rl en:

/[* strlen: return length of string s */
int strlen(char *s)

{

char *p = s;

while (*p I'='\0")
p++;
return p - s;

99

In its declaration, p isinitialized to s, that is, to point to the first character of the string.
In the whi | e loop, each character in turn is examined until the '\ 0' at the end is seen.
Because p pointsto characters, p++ advances p to the next character each time, and p- s
givesthe number of characters advanced over, that is, the string length. (The number of
charactersin the string could be too large to store in an i nt. The header <st ddef. h>
defines a type ptrdiff_t that is large enough to hold the signed difference of two
pointer values. If we were being cautious, however, we would use si ze_t for thereturn
value of strl en, to match the standard library version. si ze_t isthe unsigned integer
typereturned by thesi zeof operator.

Pointer arithmetic is consistent: if we had been dealing with f | oat s, which occupy more
storage that chars, and if p were a pointer to f | oat, p++ would advance to the next
f | oat . Thus we could write another version of al | oc that maintainsf | oat sinstead of
chars, merely by changing char to fl oat throughout al | oc and af r ee. All the pointer
manipulations automatically take into account the size of the objects pointed to.

The valid pointer operations are assignment of pointers of the same type, adding or
subtracting a pointer and an integer, subtracting or comparing two pointersto members
of the same array, and assigning or comparing to zero. All other pointer arithmetic is
illegal. It isnot legal to add two pointers, or to multiply or divide or shift or mask them,
or toadd f | oat or doubl e to them, or even, except for voi d *, toassign apointer of one
typeto a pointer of another typewithout a cast.

5.5 Character Pointers and Functions

A string constant, written as

"I ama string"
isan array of characters. In theinternal representation, the array isterminated with the
null character '\ 0' so that programs can find the end. The length in storage is thus one
mor e than the number of character s between the double quotes.

Perhaps the most common occurrence of string constants is as arguments to functions,
asin

printf("hello, world\n");
When a character string like this appears in a program, access to it is through a
character pointer; printf receives a pointer to the beginning of the character array.
That is, a string constant is accessed by a pointer toitsfirst element.

String constants need not be function arguments. If pmessage isdeclared as

char *pnessage;
then the statement

pnmessage = "now is the time";
assigns to pnessage a pointer to the character array. Thisis not a string copy; only
pointers are involved. C does not provide any operators for processing an entire string
of charactersasa unit.

Thereisan important difference between these definitions:

100

char amessage[] = "now is the time"; /* an array */

char *pnessage = "now is the tine"; /* a pointer */
amessage isan array, just big enough to hold the sequence of charactersand '\ 0' that
initializes it. Individual characters within the array may be changed but amessage will
always refer to the same storage. On the other hand, pnessage isa pointer, initialized to
point to a string constant; the pointer may subsequently be modified to point elsewhere,
but theresult isundefined if you try to modify the string contents.

amessage: ot now is the time\0

pmessage: | now is the time\0

We will illustrate mor e aspects of pointersand arrays by studying versions of two useful
functions adapted from the standard library. The first function isstrcpy(s,t), which
copies the string t to the string s. It would be nice just to say s=t but this copies the
pointer, not the characters. To copy the characters, we need a loop. The array version
first:

/* strcpy: copy t to s; array subscript version */
void strcpy(char *s, char *t)

int i;

i = 0;
while ((s[i] = t[i]) !'="'\0")
i ++;
}
For contrast, hereisaversion of st r cpy with pointers:

/* strcpy: copy t to s; pointer version */
void strcpy(char *s, char *t)

t
Int 1;
i = 0;
while ((*s = *t) 1= "\0") {
S++;
t++;
}
}

Because arguments are passed by value, strcpy can use the parameterss and t in any
way it pleases. Here they are conveniently initialized pointers, which are marched along
thearraysacharacter at atime, until the'\ 0' that terminatest hasbeen copied intos.

In practice, strcpy would not be written as we showed it above. Experienced C
programmerswould prefer

/* strcpy: copy t to s; pointer version 2 */
void strcpy(char *s, char *t)

101

while ((*s++ = *t++) 1= '\0")

}
This moves the increment of s and t into the test part of the loop. The value of *t ++ is
the character that t pointed to beforet wasincremented; the postfix ++ doesn't changet
until after this character has been fetched. In the same way, the character is stored into
the old s position before s is incremented. This character is also the value that is
compared against '\ 0' to control the loop. The net effect is that characters are copied
fromt tos, up and including theterminating' \ 0' .

Asthefinal abbreviation, observethat a comparison against ' \ 0' isredundant, sincethe
question is merely whether the expression is zero. So the function would likely be
written as

/* strcpy: copy t to s; pointer version 3 */
void strcpy(char *s, char *t)

while (*s++ = *t++)

}
Although this may seem cryptic at first sight, the notational convenience is consider able,
and theidiom should be mastered, because you will seeit frequently in C programs.

Thestrcpy inthestandard library (<st ri ng. h>) returnsthetarget string asitsfunction
value.

The second routine that we will examine isstrcnp(s, t), which comparesthe character
strings s and t, and returns negative, zero or positiveif s islexicographically lessthan,
equal to, or greater than t. The value is obtained by subtracting the characters at the
first position wheres and t disagree.

[* strcnp: return <0 if s<t, O if s==t, >0 if s>t */
int strcnp(char *s, char *t)

Lt
int i;
for (i = 0; s[i] ==1t[i]; i++4)
if (s[i] =="'\0")
return O;
return s[i] - t[i];
}
The pointer version of st r cnp:

[* strcnp: return <0 if s<t, O if s==t, >0 if s>t */
int strcnp(char *s, char *t)

for (; *s == *t; s++, t++)
if (*s =="'\0")
return O;
return *s - *t;
}
Since ++ and - - are either prefix or postfix operators, other combinations of * and ++

and - - occur, although lessfrequently. For example,

*--p

102

decrements p before fetching the character that p points to. In fact, the pair of
expressions

p++ = val; [/ push val onto stack */
val = *--p; [* pop top of stack into val */

arethe standard idiom for pushing and popping a stack; see Section 4.3.

Theheader <st ri ng. h> containsdeclarationsfor the functions mentioned in this section,
plusavariety of other string-handling functionsfrom the standard library.

Exercise 5-3. Writea pointer version of thefunction st rcat that we showed in Chapter
2:strcat (s,t) copiesthestringt totheend of s.

Exercise 5-4. Writethefunction st rend(s, t), which returns1if thestringt occursat
the end of the strings, and zer o otherwise.

Exercise 5-5. Write versions of the library functionsst r ncpy, strncat, and st r ncnp,
which operate on at most the first n characters of their argument strings. For example,
strncpy(s,t,n) copiesat most n charactersof t tos. Full descriptionsarein Appendix
B.

Exercise 5-6. Rewrite appropriate programs from earlier chapters and exer cises with
pointersinstead of array indexing. Good possibilities include get | i ne (Chapters 1 and
4), atoi, itoa, and their variants (Chapters 2, 3, and 4), reverse (Chapter 3), and

stri ndex and get op (Chapter 4).

5.6 Pointer Arrays, Pointersto Pointers

Since pointers are variables themselves, they can be stored in arrays just as other
variables can. Let usillustrate by writing a program that will sort a set of text linesinto
alphabetic order, a stripped-down version of the UNIX program sort .

In Chapter 3 we presented a Shell sort function that would sort an array of integers,
and in Chapter 4 we improved on it with a quicksort. The same algorithms will work,
except that now we have to deal with lines of text, which are of different lengths, and
which, unlike integers, can't be compared or moved in a single operation. We need a
data representation that will cope efficiently and conveniently with variable-length text
lines.

Thisiswherethe array of pointersenters. If thelinesto be sorted are stored end-to-end
in one long character array, then each line can be accessed by a pointer to its first
character. The pointers themselves can bee stored in an array. Two lines can be
compared by passing their pointersto strcnp. When two out-of-order lines have to be
exchanged, the pointersin the pointer array are exchanged, not thetext linesthemselves.

. » defghi L defghi
.—4.{ jklmnopqrst | > jklmnopqgrst |
. abec o abec

103

This eliminates the twin problems of complicated storage management and high
over head that would go with moving the lines themselves.

The sorting process hasthree steps:

read all the lines of input
sort them
print them in order

As usual, it's best to divide the program into functions that match this natural division,
with the main routine controlling the other functions. Let us defer the sorting step for a
moment, and concentrate on the data structure and the input and output.

The input routine has to collect and save the characters of each line, and build an array
of pointersto the lines. It will also have to count the number of input lines, since that
information is needed for sorting and printing. Since the input function can only cope
with a finite number of input lines, it can return someillegal count like - 1 if too much
input is presented.

The output routine only has to print the lines in the order in which they appear in the
array of pointers.

#i ncl ude <stdi o. h>
#i ncl ude <string. h>

#defi ne MAXLI NES 5000 /* max #lines to be sorted */
char *lineptr[MAXLINES]; /* pointers to text lines */

int readlines(char *lineptr[], int nlines);
void witelines(char *lineptr[], int nlines);

void gsort(char *lineptr[], int left, int right);

/* sort input lines */
mai n()
{

i nt nlines; /* nunber of input lines read */

if ((nlines = readlines(lineptr, MAXLINES)) >= 0) {
gsort(lineptr, O, nlines-1);
writelines(lineptr, nlines);
return O;

} else {
printf("error: input too big to sort\n");
return 1;

}

#defi ne MAXLEN 1000 /* max |ength of any input line */
int getline(char *, int);
char *alloc(int);

/* readlines: read input lines */
int readlines(char *lineptr[], int maxlines)
{

int len, nlines;

char *p, |ine[MAXLEN] ;

104

nlines = 0;
while ((len = getline(line, MAXLEN)) > 0)

if (nlines >= maxlines || p = alloc(len) == NULL)
return -1;
el se {
line[len-1] = '"\0"; [/* delete newine */
strcpy(p, line);
[ineptr[nlines++] = p
}
return nlines;
}
/* witelines: wite output lines */
void witelines(char *lineptr[], int nlines)
{
int i;
for (i = 0; i < nlines; i++)
printf("%\n", lineptr[i]);
}

Thefunction get | i ne isfrom Section 1.9.

Themain new thing isthe declaration for | i neptr:

char *1ineptr[MAXLI NES]
saysthat | i neptr isan array of MAXLI NES elements, each element of which isa pointer to
achar. Thatis, lineptr[i] isacharacter pointer, and *1i neptr[i] isthecharacter it
pointsto, thefirst character of thei -th saved text line.

Since | i nept r isitself the name of an array, it can be treated as a pointer in the same
manner asin our earlier examples,andwri t el i nes can bewritten instead as

/* witelines: wite output lines */
void witelines(char *lineptr[], int nlines)

while (nlines-- > 0)
printf("%s\n", *lineptr++);
}
Initially, *1i neptr points to the first line; each element advances it to the next line

pointer whilenl i nes iscounted down.

With input and output under control, we can proceed to sorting. The quicksort from
Chapter 4 needs minor changes. the declarations have to be modified, and the
comparison operation must be done by calling st r cnp. The algorithm remains the same,
which gives us some confidence that it will still work.

/* gsort: sort v[left]...v[right] into increasing order */
void gsort(char *v[], int left, int right)

int i, last;
void swap(char *v[], int i, int j);

if (left >=right) /* do nothing if array contains */
return; /* fewer than two el enments */
swap(v, left, (left + right)/2);

105

last = left;

for (i =left+l; i <= right; i++)
if (strenp(v[i], v[left]) < 0)

swap(v, ++last, i);

swap(v, left, last);

gsort(v, left, last-1);

gsort(v, last+1l, right);

}
Similarly, the swap routine needs only trivial changes:

/* swap: interchange v[i] and v[j] */
voi d swap(char *v[], int i, int j)
char *tenp;
tenmp = v[i];
v[i] = v[jl;
vij] = tenp;

}
Since any individual element of v (alias | i neptr) is a character pointer, t enp must be
also, so one can be copied to the other.

Exercise 5-7. Rewriter eadl i nes tostorelinesin an array supplied by mai n, rather than
calling al | oc to maintain storage. How much faster isthe program?

5.7 Multi-dimensional Arrays

C provides rectangular multi-dimensional arrays, although in practice they are much
less used than arrays of pointers. In this section, we will show some of their properties.

Consider the problem of date conversion, from day of the month to day of the year and
vice versa. For example, March 1 isthe 60th day of a non-leap year, and the 61st day of
aleap year. Let us define two functionsto do the conversions: day_of _year convertsthe
month and day into the day of the year, and nont h_day convertsthe day of the year into
the month and day. Since this latter function computes two values, the month and day
argumentswill be pointers:

nont h_day(1988, 60, &m &d)
setsmto 2 and d to 29 (February 29th).

These functions both need the same information, a table of the number of daysin each
month (""thirty days hath September ...""). Since the number of days per month differs
for leap years and non-leap years, it's easier to separate them into two rows of a two-
dimensional array than to keep track of what happensto February during computation.
Thearray and thefunctionsfor performing the transfor mations are asfollows:

static char daytab[2][13] = {
{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
b

/* day_of year: set day of year fromnonth & day */
i nt day_of _year(int year, int nonth, int day)

{

int i, |eap;

106

leap = year% == 0 &% year%d00 !'= 0 || year%00 == O;
for (i =1; i < nonth; i++)
day += daytab[leap][i];

return day;
}
/* nmonth_day: set nonth, day from day of year */
void nonth_day(int year, int yearday, int *pnonth, int *pday)
{

int i, |eap;

leap = year% == 0 && year%d00 != 0 || year%00 == O;

for (i = 1; yearday > daytab[leap][i]; i++)
yearday -= daytab[leap][i];
*pnonth = i;
*pday = yearday;
}
Recall that the arithmetic value of a logical expression, such asthe onefor | eap, iseither

zero (false) or one (true), soit can be used asa subscript of thearray dayt ab.

The array dayt ab has to be external to both day_of _year and nont h_day, so they can
both use it. We made it char toillustrate a legitimate use of char for storing small non-
character integers.

dayt ab is the first two-dimensional array we have dealt with. In C, a two-dimensional
array is really a one-dimensional array, each of whose elements is an array. Hence
subscripts arewritten as

daytab[i][]j] /* [row][col] */
rather than

daytab[i,j] [* \\RONG */
Other than this notational distinction, a two-dimensional array can be treated in much
the same way as in other languages. Elements are stored by rows, so the rightmost
subscript, or column, variesfastest as elements are accessed in storage order.

An array isinitialized by a list of initializers in braces; each row of a two-dimensional
array is initialized by a corresponding sub-list. We started the array daytab with a
column of zero so that month numbers can run from the natural 1 to 12 instead of O to
11. Since spaceisnot at a premium here, thisisclearer than adjusting the indices.

If atwo-dimensional array isto be passed to a function, the parameter declaration in the
function must include the number of columns; the number of rows isirrelevant, since
what is passed is, as before, a pointer to an array of rows, where each row isan array of
13ints. In thisparticular case, it isa pointer to objectsthat arearrays of 13i nt s. Thus
if thearray dayt ab isto be passed to a function f , the declaration of f would be:

f(int daytab[2][13]) { ... }
It could also be

f(int daytab[][13]) { ... }
sincethe number of rowsisirreevant, or it could be

f(int (*daytab)[13]) { ... }

107

which says that the parameter is a pointer to an array of 13 integers. The parentheses
are necessary since brackets[] have higher precedence than *. Without parentheses, the
declaration

i nt *daytab[13]
is an array of 13 pointers to integers. More generally, only the first dimension
(subscript) of an array isfree; all the other s haveto be specified.

Section 5.12 hasa further discussion of complicated declarations.

Exercise 5-8. Thereisnoerror checkingin day_of _year or nont h_day. Remedy this
defect.

5.8 Initialization of Pointer Arrays

Consider the problem of writing a function nont h_name(n) , which returnsa pointer to a
character string containing the name of the n-th month. Thisis an ideal application for
an internal st ati c array. nont h_nane contains a private array of character strings, and
returns a pointer to the proper one when called. This section shows how that array of
names isinitialized.

The syntax issimilar to previousinitializations:

/* nmonth_nane: return nane of n-th nonth */
char *nont h_name(int n)

{

static char *nanme[] = {
"1l egal nonth",
"January", "February", "March",
"April", "May", "June",
"“July", "August", "Septenmber",
"Oct ober", "Novenber", "Decenber"

s

return (n <1 || n > 12) ? name[0] : name[n];
}
The declaration of name, which isan array of character pointers, isthe same as! i neptr
in the sorting example. Theinitializer isalist of character strings; each isassigned to the
corresponding position in the array. The characters of the i-th string are placed
somewhere, and a pointer to them is stored in name[i] . Since the size of the array name
isnot specified, the compiler countstheinitializersand fillsin the correct number.

5.9 Pointers vs. Multi-dimensional Arrays

Newcomers to C are sometimes confused about the difference between a two-
dimensional array and an array of pointers, such as nane in the example above. Given
the definitions

int a[10][20];

int *b[10];
then a[3] [4] and b[3] [4] areboth syntactically legal referencestoasinglei nt.Buta is
a true two-dimensional array: 200 i nt -sized locations have been set aside, and the
conventional rectangular subscript calculation 20 * row +col isused to find the element

108

a[row, col]. For b, however, the definition only allocates 10 pointers and does not
initialize them; initialization must be done explicitly, either statically or with code.
Assuming that each element of b does point to a twenty-element array, then there will be
200 nt sset aside, plusten cellsfor the pointers. Theimportant advantage of the pointer
array isthat the rows of the array may be of different lengths. That is, each element of b
need not point to a twenty-element vector; some may point to two elements, some to
fifty, and someto noneat all.

Although we have phrased this discussion in terms of integers, by far the most frequent
use of arrays of pointersisto store character stringsof diverselengths, asin the function
mont h_name. Compar ethe declaration and picturefor an array of pointers:

char *nanme[] = { "Illegal nonth", "Jan", "Feb", "Mar" };
name:
. » Illegal month\0
. > JEJJ\D
. » Feb\ﬂ
. > HEI\O
with those for atwo-dimensional array:
char anane[][15] ={ "Illegal nmonth", "Jan", "Feb", "Mar" },;
aname :
|Illegal month\0 Jan\0 Feb\0 Mat\0
0 15 30 45

Exercise 5-9. Rewritetheroutinesday_of _year and nont h_day with pointersinstead of
indexing.

5.10 Command-line Arguments

In environments that support C, there is a way to pass command-line arguments or
parametersto a program when it begins executing. When mai n iscalled, it is called with
two arguments. Thefirst (conventionally called ar gc, for argument count) isthe number
of command-line arguments the program was invoked with; the second (argv, for
argument vector) is a pointer to an array of character strings that contain the
arguments, one per string. We customarily use multiple levels of pointersto manipulate
these character strings.

Thesimplest illustration isthe program echo, which echoesits command-line arguments
on asingleline, separated by blanks. That is, the command

109

echo hello, world
printsthe output

hell o, world
By convention, ar gv[0] isthe name by which the program was invoked, so ar gc is at
least 1. If argc is 1, there are no command-line arguments after the program name. In
the example above, ar gc is3, and argv[0] ,argv[1] ,and ar gv[2] are"echo","hel l o, ",
and "worl d" respectively. The first optional argument is argv[1] and the last is
ar gv[ar gc- 1] ; additionally, the standard requiresthat ar gv[ar gc] beanull pointer.

argv:
. " e ~ echol\0
. » hello,\0
. ~ world\0

Thefirst version of echo treatsar gv asan array of character pointers:

#i ncl ude <stdi o. h>

/* echo command-I|ine argunents; 1st version */
mai n(int argc, char *argv[])

-
int i;
for (i =1, i < argc; i++)
printf("%%", argv[i], (i < argc-1) 2 " " : "");
printf("\n");
return O;
}

Since ar gv is a pointer to an array of pointers, we can manipulate the pointer rather
than index thearray. Thisnext variant is based on incrementing ar gv, which isa pointer
to pointer tochar , whilear gc iscounted down:

#i ncl ude <stdi o. h>

/* echo command-I|ine argunents; 2nd version */
mai n(int argc, char *argv[])

while (--argc > 0)

printf("%%", *++argv, (argc > 1) 2 " " : "");
printf("\n");
return O;

}
Since ar gv isa pointer to the beginning of the array of argument strings, incrementing it

by 1 (++ar gv) makesit point at theoriginal ar gv[1] instead of ar gv[0] . Each successive
increment moves it along to the next argument; *argv is then the pointer to that
argument. At the same time, ar gc is decremented; when it becomes zero, there are no
arguments left to print.

110
Alternatively, we could writetheprint f statement as

printf((argc > 1) ? "% " : "9%", *++argv);
This showsthat the for mat argument of printf can bean expression too.

As a second example, let us make some enhancements to the pattern-finding program
from Section 4.1. If you recall, we wired the search pattern deep into the program, an
obviously unsatisfactory arrangement. Following the lead of the UNIX program grep,
let us enhance the program so the pattern to be matched is specified by the first
argument on the command line.

#i ncl ude <stdi o. h>
#i ncl ude <string. h>
#def i ne MAXLI NE 1000

int getline(char *line, int max);

/[* find: print lines that match pattern from 1st arg */
mai n(int argc, char *argv[])

{
char | i ne[MAXLI NE] ;
int found = O;
if (argc !'= 2)
printf("Usage: find pattern\n");
el se
while (getline(line, MAXLINE) > 0)
if (strstr(line, argv[1]) != NULL) {
printf("%", line);
f ound++;
return found;
}

The standard library function strstr(s,t) returnsa pointer to the first occurrence of
thestringt inthestrings, or NULL if thereisnone. It isdeclared in <stri ng. h>.

The model can now be elaborated to illustrate further pointer constructions. Suppose we
want to allow two optional arguments. One says print all the lines except those that
match the pattern;'" the second says " precede each printed line by itsline number."

A common convention for C programson UNIX systemsisthat an argument that begins
with a minus sign introduces an optional flag or parameter. If we choose - x (for
“except'') to signal the inversion, and -n (“"number'') to request line numbering, then
the command

find -x -npattern
will print each linethat doesn't match the pattern, preceded by itsline number.

Optional arguments should be permitted in any order, and the rest of the program

should be independent of the number of arguments that we present. Furthermore, it is
convenient for usersif option arguments can be combined, asin

find -nx pattern

111
Hereisthe program:

#i ncl ude <stdi o. h>
#i ncl ude <string. h>
#def i ne MAXLI NE 1000

int getline(char *line, int max);

/* find: print lines that match pattern from 1st arg */
mai n(i nt argc, char *argv[])
{

char 1ine[MAXLI NE] ;

long lineno = 0;

int ¢, except = 0, number = 0, found = O;

while (--argc > 0 & (*++argv)[0] == "-")
while (c = *++argv[0])
switch (c¢) {
case '

X"
except = 1;
br eak;

n
nunber
br eak;

defaul t:
printf("find: illegal option %\n", c);
argc = 0;
found = -1;
br eak;

case

1;

}
if (argc !'= 1)
printf("Usage: find -x -n pattern\n");
el se
while (getline(line, MAXLINE) > 0) {
i neno++;
if ((strstr(line, *argv) != NULL) != except) {
i f (nunber)
printf("%d:", lineno);
printf("%", line);
f ound++;

}

return found;

}
ar gc isdecremented and ar gv isincremented before each optional argument. At the end

of the loop, if there are no errors, ar gc tells how many arguments remain unprocessed
and ar gv pointsto thefirst of these. Thusar gc should be 1 and *ar gv should point at the
pattern. Notice that *++ar gv is a pointer to an argument string, so (*++argv) [0] isits
first character. (An alternate valid form would be **++ar gv.) Because [] binds tighter
than * and ++, the parentheses are necessary; without them the expression would be
taken as *++(argv[0]). In fact, that is what we have used in the inner loop, where the
task is to walk along a specific argument string. In the inner loop, the expression
*++ar gv[0] incrementsthe pointer ar gv[0] !

It israrethat one uses pointer expressions more complicated than these; in such cases,
breaking them into two or three stepswill be moreintuitive.

Exercise 5-10. Write the program expr, which evaluates a rever se Polish expression
from the command line, where each operator or operand is a separate argument. For
example,

112

expr 2 3 4 + *
evaluates2 * (3+4).

Exercise5-11. Modify the programent ab and det ab (written asexercisesin Chapter 1)
to accept a list of tab stops as arguments. Use the default tab settings if there are no
arguments.

Exercise 5-12. Extend ent ab and det ab to accept the shorthand

entab -m +n
to mean tab stops every n columns, starting at column m. Choose convenient (for the
user) default behavior.

Exercise 5-13. Write the program t ai | , which printsthelast n lines of its input. By
default, nisset to 10, let us say, but it can be changed by an optional argument so that

tail -n
prints the last n lines. The program should behave rationally no matter how
unreasonable the input or the value of n. Write the program so it makes the best use of
available storage; lines should be stored asin the sorting program of Section 5.6, not in a
two-dimensional array of fixed size.

5.11 Pointers to Functions

In C, a function itself isnot a variable, but it is possible to define pointers to functions,
which can be assigned, placed in arrays, passed to functions, returned by functions, and
so on. We will illustrate this by modifying the sorting procedure written earlier in this
chapter so that if the optional argument -n is given, it will sort the input lines
numerically instead of lexicographically.

A sort often consists of three parts - a comparison that determines the ordering of any
pair of objects, an exchange that reverses their order, and a sorting algorithm that
makes comparisons and exchanges until the objects arein order. The sorting algorithm
is independent of the comparison and exchange operations, so by passing different
comparison and exchange functions to it, we can arrange to sort by different criteria.
Thisisthe approach taken in our new sort.

L exicogr aphic comparison of two linesis done by st r cnp, as before; we will also need a
routine nuncnp that compares two lines on the basis of numeric value and returns the
same kind of condition indication asst r cnp does. These functions are declared ahead of
mai n and a pointer to the appropriate oneis passed to gsort . We have skimped on error
processing for arguments, so asto concentrate on the main issues.

#i ncl ude <stdi o. h>
#i ncl ude <string. h>

#defi ne MAXLI NES 5000 /* max #lines to be sorted */
char *lineptr[MAXLINES]; /* pointers to text lines */

int readlines(char *lineptr[], int nlines);

113

void witelines(char *lineptr[], int nlines);

void gsort(void *lineptr[], int left, int right,
int (*conmp)(void *, void *));
i nt nuncnp(char *, char *);

/* sort input lines */
mei n(int argc, char *argv[])

{
i nt nlines; /* nunber of input lines read */
int nuneric = O; /[* 1 if nuneric sort */
if (argc > 1 && strcnp(argv[1l], "-n") == 0)
nuneric = 1;
if ((nlines = readlines(lineptr, MAXLINES)) >= 0) {
gsort((void**) lineptr, 0, nlines-1
(int (*)(void*,void*))(nunmeric ? nuncnp : strcnp));
writelines(lineptr, nlines);
return O;
} else {
printf("input too big to sort\n");
return 1;
}
}

Inthecall togsort,strcnp and nuncnp are addresses of functions. Sincethey are known
to be functions, the & is not necessary, in the same way that it is not needed before an
array name.

We have written gsort so it can process any data type, not just character strings. As
indicated by the function prototype, gsort expects an array of pointers, two integers,
and a function with two pointer arguments. The generic pointer type voi d * isused for
the pointer arguments. Any pointer can be cast tovoi d * and back again without loss of
information, so we can call gsort by casting argumentsto voi d *. The elaborate cast of
the function argument casts the arguments of the comparison function. These will
generally have no effect on actual representation, but assurethe compiler that all iswell.

/* gsort: sort v[left]...v[right] into increasing order */
void gsort(void *v[], int left, int right,
int (*conmp)(void *, void *))

{
int i, last;
void swap(void *v[], int, int);
if (left >= right) /* do nothing if array contains */
return; [* fewer than two el ements */
swap(v, left, (left + right)/2);
last = left;
for (i =left+l; i <=right; i++)
if ((*conmp)(v[i], v[left]) < 0)
swap(v, ++last, i);
swap(v, left, last);
gsort(v, left, last-1, conp);
gsort(v, last+1, right, conmp);
}

Thedeclarations should be studied with some care. The fourth parameter of gsort is

int (*comp)(void *, void *)

114

which says that conp is a pointer to a function that has two voi d * arguments and
returnsanint.

Theuse of conmp in theline

if ((*conmp)(v[i], v[left]) < 0)
is consistent with the declaration: conp is a pointer to a function, * conp isthe function,
and

(*comp) (v[i], v[left])
isthe call to it. The parentheses are needed so the components ar e correctly associated;
without them,

int *conp(void *, void *) /* WRONG */
saysthat conp isafunction returning a pointer toani nt , which isvery different.

We have already shown st rcnp, which compares two strings. Here is nuncnp, which
comparestwo strings on aleading numeric value, computed by calling at of :

#i ncl ude <stdlib. h>

/* nuncnp: conpare sl and s2 nunerically */
i nt nuncnp(char *sl1, char *s2)

{
doubl e v1, v2;

vl = atof(s1);
v2 = atof(s2);
if (vl <v2)
return -1;
else if (vl > v2)
return 1;
el se
return O;

}
The swap function, which exchanges two pointers, is identical to what we presented
earlier in the chapter, except that the declarations are changed tovoi d *.

void swap(void *v[], int i, int j;)
void *tenp;
v[i];

vij];
tenp;

tenp
v[i]
vijl

}
A variety of other options can be added to the sorting program; some make challenging
exer cises.

Exercise 5-14. Modify the sort program to handle a - r flag, which indicates sortingin
rever se (decreasing) order. Besurethat - r works with - n.

Exercise 5-15. Add the option -f to fold upper and lower case together, so that case
distinctions are not made during sorting; for example, a and A compare equal.

115

Exercise 5-16. Add the-d (" directory order') option, which makes comparisonsonly on
letters, numbersand blanks. Make sureit worksin conjunction with - f .

Exercise 5-17. Add afield-sear ching capability, so sorting may bee doneon fieldswithin
lines, each field sorted according to an independent set of options. (The index for this
book was sorted with - df for theindex category and - n for the page numbers.)

5.12 Complicated Declarations

C is sometimes castigated for the syntax of its declarations, particularly ones that
involve pointers to functions. The syntax is an attempt to make the declaration and the
use agree; it works well for smple cases, but it can be confusing for the harder ones,
because declarations cannot be read left to right, and because par entheses ar e over -used.
The difference between

int *f(); [* f: function returning pointer to int */
and

int (*pf)(); /* pf: pointer to function returning int */
illustrates the problem: * is a prefix operator and it has lower precedence than (), so
parentheses ar e necessary to for ce the proper association.

Although truly complicated declarationsrarely arisein practice, it isimportant to know
how to understand them, and, if necessary, how to create them. One good way to
synthesize declarationsisin small stepswith t ypedef , which isdiscussed in Section 6.7.
As an alternative, in this section we will present a pair of programs that convert from
valid C to aword description and back again. Theword description reads|eft to right.

Thefirst, dcl , isthe more complex. It converts a C declaration into a word description,
asin these examples:

char **argv
argv: pointer to char
int (*daytab)[13]
daytab: pointer to array[13] of int
i nt *daytab[13]
daytab: array[13] of pointer to int
void *conp()
comp: function returning pointer to void
void (*comp) ()
conmp: pointer to function returning void
char (*(*x())[1)()
x: function returning pointer to array[] of
pointer to function returning char
char (*(*x[3])())[5]
x: array[3] of pointer to function returning
pointer to array[5] of char

dcl isbased on thegrammar that specifies a declarator, which is spelled out precisely in
Appendix A, Section 8.5; thisisa simplified form:

dcl : optional *'s direct-dcl
di rect-dcl name

(dcl)

di rect-dcl ()

direct-dcl[optional size]

116

In words, a dcl is a direct-dcl, perhaps preceded by *'s. A direct-dcl is a name, or a
parenthesized dcl, or a direct-dcl followed by parentheses, or a direct-dcl followed by

bracketswith an optional size.

Thisgrammar can be used to parsefunctions. For instance, consider thisdeclarator:

(*pfal]) ()
pf a will be identified as a name and thus as a direct-dcl. Then pfa[] isalso adirect-dcl.

Then *pfa[] isrecognized asa dcl, so (*pfa[]) isa direct-dcl. Then (*pfa[]) () isa
direct-dcl and thus a dcl. We can also illustrate the parse with a tree like this (where
direct-dcl has been abbreviated to dir-dcl):

(* pfa [] >y O
|

name

dir-decl
|

dir|—dcf

drzf

dz’r|—dcf

dz’r|—dcf

def

The heart of the dcl program is a pair of functions, dcl and dirdcl, that parse a
declaration according to this grammar. Because the grammar isrecursively defined, the
functions call each other recursively as they recognize pieces of a declaration; the
program iscalled arecursive-descent parser.

/* dcl: parse a declarator */
voi d dcl (voi d)
{

int ns;

for (ns = 0; gettoken() =="'*";) /* count *'s */

ns++;
di rdcl ();
while (ns-- > 0)
strcat (out, " pointer to");

}

/* dirdcl: parse a direct declarator */
voi d dirdcl (voi d)
{

int type;

if (tokentype == "'(") { [* (dcl) */
del ()
if (tokentype !'=")")
printf("error: mssing)\n");
} else if (tokentype == NAME) /* variable name */
strcpy(name, token);
el se
printf("error: expected name or (dcl)\n");
while ((type=gettoken()) == PARENS || type == BRACKETS)
if (type == PARENS)
strcat (out, " function returning");
el se {
strcat(out, " array");
strcat (out, token);
strcat (out, " of");
}
}

117

Since the programs are intended to be illustrative, not bullet-proof, there are significant
restrictionson dcl . It can only handle a simple data type line char or i nt. It does not
handle argument typesin functions, or qualifierslike const . Spurious blanks confuseit.
It doesn't do much error recovery, so invalid declarations will also confuse it. These

improvements ar e left as exer cises.

Herearetheglobal variables and the main routine:

#i ncl ude <stdi o. h>

#i ncl ude <string. h>

#i ncl ude <ctype. h>

#def i ne MAXTOKEN 100

enum { NAME, PARENS, BRACKETS };

voi d dcl (void);
voi d dirdcl (void);

i nt gettoken(void);

i nt tokentype; /* type of last token */
char token[MAXTOKEN] ; /* |l ast token string */
char nanme[MAXTOKEN] ; /* identifier name */

char datatype[MAXTOKEN]; /* data type = char, int, etc. */
char out[1000];

mai n() /* convert declaration to words */

whil e (gettoken() !'= EOF) { /* 1st token on line */
strcpy(datatype, token); /* is the datatype */
out[0] = "\0";
dcl (); /* parse rest of line */

if (tokentype !'="\n")

118

printf("syntax error\n");
printf("%: % %\n", nanme, out, datatype);

}

return O;
}
The function get t oken skips blanks and tabs, then finds the next token in theinput; a
“token' is a name, a pair of parentheses, a pair of brackets perhaps including a
number, or any other single character.

int gettoken(void) /* return next token */

int ¢, getch(void);
voi d ungetch(int);
char *p = token;

while ((c = getch()) ==" " |] ¢ == "\t")

if (c=="() {
if ((c =getch()) ==")") {
strcpy(token, "()");
return tokentype = PARENS;
} else {
ungetch(c);
return tokentype

(s

}
} elseif (c =="]") {
for (*p++ = c; (*p++

getch()) '="1";)
*p ="\0',
return tokentype = BRACKETS;
} else if (isalpha(c)) {
for (*p++ = c; isalnumc = getch());)
*p++ = c;
*p ="\0',
ungetch(c);

return tokentype = NAME;
} else
return tokentype = c;

}
get ch and unget ch arediscussed in Chapter 4.

Going in the other direction is easier, especially if we do not worry about generating
redundant parentheses. The program undcl converts a word description like “x isa
function returning a pointer to an array of pointersto functionsreturning char," which
we will express as

x () * [T * () char
to

char (*(*x())[1)()
The abbreviated input syntax lets us reuse the get t oken function. undcl also uses the

same external variables asdcl does.

/* undcl: convert word descriptions to declarations */
mai n()
o

Int type;

char tenp[MAXTOKEN] ;

119

while (gettoken() !'= EOF) {
strcpy(out, token);
while ((type = gettoken()) !'= "\n")

if (type == PARENS || type == BRACKETS)
strcat (out, token);

else if (type == "*") {
sprintf(tenmp, "(*%)", out);
strcpy(out, tenp);

} else if (type == NAME) {
sprintf(tenp, "% %", token, out);
strcpy(out, tenp);

} else
printf("invalid input at %\n", token);

}

return O;

}
Exercise 5-18. Makedc! recover from input errors.

Exercise 5-19. Modify undcl so that it does not add redundant parentheses to
declarations.

Exercise 5-20. Expand dcl to handle declarations with function argument types,
qualifierslikeconst , and so on.

120

Chapter 6 - Structures

A structureis a collection of one or more variables, possibly of different types, grouped
together under a single name for convenient handling. (Structures are called ““records'
in some languages, notably Pascal.) Structures help to organize complicated data,
particularly in large programs, because they permit a group of related variables to be
treated asa unit instead of as separ ate entities.

Onetraditional example of a structureisthe payroll record: an employeeis described by
a set of attributes such as name, address, social security number, salary, etc. Some of
these in turn could be structures: a name has several components, as does an address
and even a salary. Another example, more typical for C, comes from graphics: a point is
apair of coordinate, arectangleisa pair of points, and so on.

The main change made by the ANSI standard is to define structure assignment -
structures may be copied and assigned to, passed to functions, and returned by
functions. This has been supported by most compilersfor many years, but the properties
arenow precisely defined. Automatic structuresand arrays may now also beinitialized.

6.1 Basics of Structures

Let uscreate a few structures suitable for graphics. The basic object isa point, which we
will assume has an x coordinate and ay coordinate, both integers.

0

(0,0)

Thetwo components can be placed in a structure declared like this:

struct point {
int x;
int vy;
b
The keyword st ruct introduces a structure declaration, which is a list of declarations
enclosed in braces. An optional name called a structure tag may follow theword st r uct
(aswith poi nt here). Thetag namesthiskind of structure, and can be used subsequently
asashorthand for the part of the declaration in braces.

121

The variables named in a structure are called members. A structure member or tag and
an ordinary (i.e,, non-member) variable can have the same name without conflict, since
they can always be distinguished by context. Further mor e, the same member names may
occur in different structures, although as a matter of style one would normally use the
same names only for closely related objects.

A struct declaration defines atype. Theright brace that terminatesthe list of members
may be followed by alist of variables, just asfor any basic type. That is,

struct { ... } X, vy, z;
issyntactically analogousto

int x, vy, z;
in the sense that each statement declares x, y and z to be variables of the named type
and causes spaceto be set aside for them.

A structure declaration that is not followed by a list of variables reserves no storage; it
merely describes a template or shape of a structure. If the declaration is tagged,
however, the tag can be used later in definitions of instances of the structure. For
example, given the declaration of poi nt above,

struct point pt;
defines a variable pt which is a structure of type struct point. A structure can be
initialized by following its definition with a list of initializers, each a constant expression,
for the members:

struct maxpt = { 320, 200 };
An automatic structure may also be initialized by assignment or by calling a function
that returnsastructure of theright type.

A member of a particular structureisreferred toin an expression by a construction of
theform

structure-name.member

The structure member operator . connects the structure name and the member name.
To print the coordinates of the point pt , for instance,

printf("%l, %", pt.x, pt.y);
or to computethedistance from theorigin (0,0) to pt

doubl e dist, sqgrt(double);

dist = sqgrt((double)pt.x * pt.x + (double)pt.y * pt.y);
Structures can be nested. One representation of a rectangle is a pair of points that
denote the diagonally opposite corners:

122

pti

1!
3

struct rect {
struct point ptl;
struct point pt2;
1
Therect structurecontainstwo poi nt structures. If wedeclarescreen as

struct rect screen;
then

screen. ptl.x
referstothe x coordinate of the pt 1 member of scr een.

6.2 Structures and Functions

The only legal operations on a structure are copying it or assigning to it asa unit, taking
its address with &, and accessing its members. Copy and assignment include passing
argumentsto functions and returning values from functions as well. Structures may not
be compared. A structure may be initialized by a list of constant member values; an
automatic structure may also beinitialized by an assignment.

Let us investigate structures by writing some functions to manipulate points and
rectangles. There are at least three possible approaches. pass components separ ately,
pass an entire structure, or passa pointer toit. Each hasitsgood pointsand bad points.

Thefirst function, makepoi nt , will taketwo integersand return apoi nt structure:

/* makepoint: rmake a point fromx and y conmponents */
struct point nakepoint(int x, int y)
{

struct point tenp;

tenp. X X;

tenp.y = y;
return terrp;

}
Notice that there is no conflict between the argument name and the member with the
same name; indeed there-use of the names stressestherelationship.

makepoi nt can now be used to initialize any structure dynamically, or to provide
structure argumentsto a function:

struct rect screen;

123

struct point niddle;
struct point nakepoint(int, int);

screen. ptl = nakepoint(0,0);

screen. pt2 makepoi nt (XMAX, YMAX) ;

m ddl e = makepoint((screen.ptl.x + screen.pt2.x)/2,
(screen.ptl.y + screen.pt2.y)/2);

Thenext step isa set of functionsto do arithmetic on points. For instance,

/* addpoints: add two points */
struct addpoint(struct point pl, struct point p2)

{
pl.x += p2.Xx;
pl.y += p2.y;
return pil;

}

Here both the arguments and the return value are structures. We incremented the
componentsin pl rather than using an explicit temporary variable to emphasize that
structure parameters are passed by value like any others.

As another example, the function pti nrect tests whether a point isinside a rectangle,
wher e we have adopted the convention that a rectangle includesits left and bottom sides
but not itstop and right sides:

/[* ptinrect: return 1 if pinr, Oif not */
int ptinrect(struct point p, struct rect r)

{
return p.x >=r.ptl.x && p.

X r.pt2.x
&& p.y >=r.ptl.y && p.y

<
< r.pt2.y;

}
This assumes that the rectangle is presented in a standard form where the pt1
coordinates are less than the pt 2 coordinates. The following function returns a rectangle
guaranteed to bein canonical form:

#define nmn(a, b) ((a) < (b) ? (a) : (b))
#define max(a, b) ((a) > (b) ? (a) : (b))

/* canonrect: canonicalize coordinates of rectangle */
struct rect canonrect(struct rect r)

{
struct rect tenp;
temp.ptl.x = min(r.ptl.x, r.pt2.x);
tenmp.ptl.y = min(r.ptl.y, r.pt2.y);
tenp.pt2.x = max(r.ptl.x, r.pt2.x);
tenp.pt2.y = max(r.ptl.y, r.pt2.y);
return tenp;

}

If alarge structureis to be passed to a function, it is generally more efficient to pass a
pointer than to copy the whole structure. Structure pointers are just like pointersto
ordinary variables. The declaration

struct point *pp;
says that pp is a pointer to a structure of type struct point.If pp pointsto a poi nt
structure, *pp isthestructure, and (*pp) . x and (*pp) . y arethemembers. To usepp, we
might write, for example,

struct point origin, *pp;

124
pp = &ori gin;
printf("originis (%, %)\n", (*pp).Xx, (*pp).VY);
The parentheses are necessary in (*pp).x because the precedence of the structure
member operator . is higher then *. The expression *pp.x means *(pp. x), which is
illegal here because x isnot a pointer.

Pointersto structures are so frequently used that an alter native notation is provided as a
shorthand. If p isa pointer to a structure, then

p- >nenber - of - structure
referstothe particular member. So we could write instead

printf("originis (%, %)\n", pp->x, pp->y);
Both . and - > associate from left toright, so if we have

struct rect r, *rp = &r,;
then these four expressions are equivalent:

r.ptl.x

rp->ptl.x

(r.ptl).x

(rp->ptl).x
The structure operators . and ->, together with () for function calls and [] for
subscripts, are at the top of the precedence hierarchy and thus bind very tightly. For
example, given the declaration

struct {
int |en;
char *str;

I o}
then

++p- >l en
increments| en, not p, because the implied parenthesization is++(p- >l en) . Parentheses
can be used to alter binding: (++p) - > en incrementsp before accessingl en, and (p++) -
>| en incrementsp afterward. (Thislast set of parenthesesis unnecessary.)

In the same way, *p->str fetches whatever str pointsto; *p->str++ increments str
after accessing whatever it pointsto (just like *s++); (*p->str) ++ increments whatever
str pointsto; and * p++- >st r incrementsp after accessing whatever st r pointsto.

6.3 Arrays of Structures

Consider writing a program to count the occurrences of each C keyword. We need an
array of character strings to hold the names, and an array of integers for the counts.
One possibility isto usetwo parallel arrays, keywor d and keycount , asin

char *keywor d[NKEYS] ;
i nt keycount [NKEYS];

But the very fact that the arrays are parallel suggests a different organization, an array
of structures. Each keyword isa pair:

char *word;
int cout;

and thereisan array of pairs. The structure declaration

125

struct key {
char *word
i nt count;
} keyt ab[NKEYS] ;
declares a structure type key, definesan array keyt ab of structures of thistype, and sets
aside storage for them. Each element of the array is a structure. This could also be
written

struct key {
char *word
int count;

}s

struct key keytab[NKEYS];
Since the structure keyt ab contains a constant set of names, it is easiest to make it an
external variable and initialize it once and for all when it is defined. The structure
initialization is analogous to earlier ones - the definition is followed by a list of
initializersenclosed in braces:

struct key {
char *word

int count;

} keytab[] = {
"auto", O,
"break", O,
"case", 0,
“char", O,
"const", O,
"conti nue", O,
"default", O,
[* ... *]
"unsi gned", O,
"void", O,
"volatile", O,
"while", O

b
The initializers are listed in pairs corresponding to the structure members. It would be
mor e preciseto enclosetheinitializersfor each " row" or structurein braces, asin

{ "auto", 0},
{ "break", 0 },
{ "case", 0},

but inner braces are not necessary when the initializers are simple variables or
character strings, and when all are present. As usual, the number of entriesin thearray
keyt ab will be computed if theinitializersare present and the[] isleft empty.

The keyword counting program begins with the definition of keyt ab. The main routine
reads the input by repeatedly calling a function get wor d that fetches oneword at a time.
Each word is looked up in keyt ab with a version of the binary search function that we
wrotein Chapter 3. Thelist of keywords must be sorted in increasing order in thetable.

#i ncl ude <stdi o. h>
#i ncl ude <ctype. h>
#i ncl ude <string. h>

#def i ne MAXWORD 100

126

int getword(char *, int);
i nt binsearch(char *, struct key *, int);

/* count C keywords */
mai n()

int n;
char wor d[MAXWORD] ;

whil e (getword(word, MAXWORD) ! = EOF)
if (isalpha(word[0]))
if ((n = binsearch(word, keytab, NKEYS)) >= 0)
keyt ab[n] . count ++;
for (n = 0; n < NKEYS;, n++)
if (keytab[n].count > 0)
printf("%d %s\n",
keyt ab[n].count, keytab[n].word);
return O;

}

/* binsearch: find word in tab[O0]...tab[n-1] */
i nt binsearch(char *word, struct key tab[], int n)

{

i nt cond;
int low, high, md;

|l ow = O;
high = n - 1;
while (low <= high) {
md = (lowthigh) / 2;
if ((cond = strcnmp(word, tab[m d].word)) < 0)
high = md - 1;
else if (cond > 0)
low = md + 1;
el se
return md;

}

return -1;

}
We will show the function get wor d in a moment; for now it suffices to say that each call
toget wor d findsaword, which iscopied into thearray named asitsfirst argument.

The quantity NKEYS isthe number of keywordsin keyt ab. Although we could count this
by hand, it's a lot easier and safer to do it by machine, especially if the list is subject to
change. One possibility would be to terminate the list of initializers with a null pointer,
then loop along keyt ab until theend isfound.

But thisis more than is needed, since the size of the array is completely determined at
compiletime. The size of thearray isthe size of one entry timesthe number of entries, so
the number of entriesisjust

sizeof keytab / sizeof struct key

C provides a compile-time unary operator called si zeof that can be used to computethe
size of any object. The expressions

si zeof object
and

127

si zeof (type nane)
yield an integer equal to the size of the specified object or typein bytes. (Strictly, si zeof
produces an unsigned integer value whose type, size_t, is defined in the header
<st ddef . h>.) An object can be a variable or array or structure. A type name can be the
name of abasictypelikei nt or doubl e, or aderived typelikea structureor a pointer.

In our case, the number of keywords is the size of the array divided by the size of one
element. Thiscomputation isused in a#def i ne statement to set the value of NKEYS:

#defi ne NKEYS (sizeof keytab / sizeof (struct key))
Another way towritethisisto dividethearray size by the size of a specific element:

#defi ne NKEYS (sizeof keytab / sizeof (keytab[0]))
Thishasthe advantage that it does not need to be changed if the type changes.

A si zeof can not be used in a #i f line, because the preprocessor does not parse type
names. But the expression in the #def i ne is not evaluated by the preprocessor, so the
code hereislegal.

Now for the function getword. We have written a more general getword than is
necessary for this program, but it is not complicated. get wor d fetches the next ““word"
from the input, where a word is either a string of letters and digits beginning with a
letter, or a single non-white space character. The function value is the first character of
theword, or EOF for end of file, or the character itself if it isnot alphabetic.

/* getword: get next word or character frominput */
int getword(char *word, int [im
{

int ¢, getch(void);

voi d ungetch(int);

char *w = word;

while (isspace(c = getch()))

if (c !'= EOF)
*WwH+ = C;

if (!isalpha(c)) {
*w="\0";
return c;

}
for (; --lim> 0; w+)
if (lisalnum(*w = getch())) {
unget ch(*w);
br eak;

}
*w="\0";
return word[O0];
}

get wor d usesthe get ch and unget ch that we wrotein Chapter 4. When the collection of
an alphanumeric token stops, getword has gone one character too far. The call to
unget ch pushes that character back on the input for the next call. get word also uses
i sspace to skip whitespace, i sal pha to identify letters, and i sal numto identify letters
and digits; all arefrom the standard header <ct ype. h>.

128

Exercise 6-1. Our version of getword does not properly handle underscores, string
constants, comments, or preprocessor control lines. Write a better version.

6.4 Pointers to Structures

To illustrate some of the considerations involved with pointers to and arrays of
structures, let us write the keyword-counting program again, this time using pointers
instead of array indices.

The external declaration of keyt ab need not change, but mai n and bi nsear ch do need
modification.

#i ncl ude <stdi o. h>
#i ncl ude <ctype. h>
#i ncl ude <string. h>
#defi ne MAXWORD 100

int getword(char *, int);
struct key *binsearch(char *, struct key *, int);

/* count C keywords; pointer version */
mai n()

char wor d[MAXWORD] ;
struct key *p;

whi l e (getword(word, MAXWORD) != EOF)
if (isalpha(word[0]))
i f ((p=binsearch(word, keytab, NKEYS)) != NULL)

p- >count ++;

for (p = keytab; p < keytab + NKEYS; p++)
if (p->count > 0)
printf("%ld %\n", p->count, p->word);
return O;

}

/* binsearch: find word in tab[0]...tab[n-1] */
struct key *binsearch(char *word, struck key *tab, int n)
{

i nt cond;

struct key *low = &t ab[0];

struct key *high = &t ab[n];

struct key *mid;

while (low < high) {
md = low+ (high-low) / 2;
if ((cond = strcnmp(word, nid->word)) < 0)
hi gh = m d;
else if (cond > 0)
low = md + 1;
el se
return md;
}
return NULL;
}
There are several things worthy of note here. First, the declaration of bi nsear ch must

indicate that it returns a pointer to struct key instead of an integer; thisis declared

129

both in the function prototype and in bi nsear ch. If bi nsear ch findstheword, it returns
apointer toit; if it fails, it returnsNULL.

Second, the elements of keyt ab are now accessed by pointers. This requires significant
changesin bi nsear ch.

Theinitializersfor | owand hi gh are now pointersto the beginning and just past the end
of thetable.

The computation of the middle element can nolonger be smply

md = (lowthigh) / 2 /* \\RONG */
because the addition of pointersisillegal. Subtraction islegal, however, so hi gh-1 owis
the number of elements, and thus

md = Ilow+ (high-low) / 2
setsm d to the element halfway between | owand hi gh.

The most important change is to adjust the algorithm to make sure that it does not
generate an illegal pointer or attempt to access an element outside the array. The
problem isthat &t ab[-1] and &t ab[n] are both outside the limitsof thearray t ab. The
former isstrictly illegal, and it isillegal to der eference the latter. The language definition
does guarantee, however, that pointer arithmetic that involves the first element beyond
theend of an array (that is, & ab[n]) will work correctly.

In mai n wewrote

for (p = keytab; p < keytab + NKEYS; p++)
If p is a pointer to a structure, arithmetic on p takes into account the size of the
structure, so p++ incrementsp by the correct amount to get the next element of the array
of structures, and thetest stopstheloop at theright time.

Don't assume, however, that the size of a structureisthe sum of the sizes of its members.
Because of alignment requirementsfor different objects, there may be unnamed "holes"
in a structure. Thus, for instance, if a char is one byte and an i nt four bytes, the
structure

struct {
char c;
int i;
b
might well require eight bytes, not five. Thesi zeof operator returnsthe proper value.

Finally, an aside on program format: when a function returns a complicated type like a
structure pointer, asin

struct key *binsearch(char *word, struct key *tab, int n)
the function name can be hard to see, and to find with a text editor. Accordingly an
alternate styleis sometimes used:

130

struct key *
bi nsearch(char *word, struct key *tab, int n)

Thisisa matter of personal taste; pick theform you like and hold to it.

6.5 Self-referential Structures

Suppose we want to handle the more general problem of counting the occurrences of all
the words in some input. Since the list of words isn't known in advance, we can't
conveniently sort it and use a binary search. Yet we can't do a linear search for each
word as it arrives, to see if it's already been seen; the program would take too long.
(More precisdly, its running time is likely to grow quadratically with the number of
input words.) How can we organize the data to copy efficiently with a list or arbitrary
wor ds?

One solution is to keep the set of words seen so far sorted at all times, by placing each
word into its proper position in theorder asit arrives. Thisshouldn't be done by shifting
words in a linear array, though - that also takes too long. Instead we will use a data
structurecalled a binary tree.

Thetreecontainsone "node'" per distinct word; each node contains

A pointer to thetext of theword,

A count of the number of occurrences,
A pointer to theleft child node,

A pointer totheright child node.

No node may have mor e than two children; it might have only zero or one.

The nodes are maintained so that at any node the left subtree contains only words that
are lexicographically less than the word at the node, and the right subtree contains only
words that are greater. This is the tree for the sentence “"now is the time for dl good
men to come to the aid of their party", as built by inserting each word as it is
encounter ed:

18 /HDW\the
7 NV AN

men of time

AR AN

all good party their to
aid

coIne

To find out whether a new word is already in the tree, start at the root and compare the
new word to the word stored at that node. If they match, the question is answered
affirmatively. If the new record is less than the tree word, continue searching at the left
child, otherwise at the right child. If there is no child in the required direction, the new
word is not in the tree, and in fact the empty dot is the proper place to add the new

131

word. This process is recursive, since the search from any node uses a search from one
of its children. Accordingly, recursive routines for insertion and printing will be most
natural.

Going back to the description of a node, it is most conveniently represented as a
structurewith four components:

struct tnode { /* the tree node: */
char *word; /* points to the text */
int count; /* nunber of occurrences */
struct tnode *|eft; /* left child */

struct tnode *right; /* right child */
b
Thisrecursive declaration of a node might look chancy, but it's correct. It isillegal for a
structureto contain an instance of itself, but

struct tnode *left;
declares| eft tobea pointer toat node, not at node itself.

Occasionally, one needs a variation of self-referential structures: two structures that
refer to each other. The way to handlethisis:

struct t {

struct s *p; /* p points to an s */
b

struct s {

éi}uct t *q; /* q points to at */
b
The code for the whole program is surprisingly small, given a handful of supporting
routines like get wor d that we have already written. The main routine reads words with
get wor d and installsthem in thetreewith addt r ee.

#i ncl ude <stdi o. h>
#i ncl ude <ctype. h>
#i ncl ude <string. h>

#def i ne MAXWORD 100

struct tnode *addtree(struct tnode *, char *);
void treeprint(struct tnode *);

int getword(char *, int);

/* word frequency count */
mai n()
{
struct tnode *root;
char wor d[MAXWORD] ;

root = NULL;
whil e (getword(word, MAXWORD) ! = EOF)
if (isalpha(word[0]))
root = addtree(root, word);
treeprint(root);
return O;

132

Thefunction addt r ee isrecursive. A word is presented by mai n to thetop level (theroot)
of the tree. At each stage, that word is compared to the word already stored at the node,
and is percolated down to either the left or right subtree by a recursive call to adtr ee.
Eventually, the word either matches something already in the tree (in which case the
count is incremented), or a null pointer is encountered, indicating that a node must be
created and added to the tree. If a new node is created, addt r ee returns a pointer to it,
which isinstalled in the parent node.

struct tnode *talloc(void);
char *strdup(char *);

/* addtree: add a node with w, at or below p */
struct treenode *addtree(struct tnode *p, char *w)

{

i nt cond;

if (p == NULL) { /* a new word has arrived */
p = talloc(); /* make a new node */
p->word = strdup(w);
p- >count = 1;
p->left = p->right = NULL
} else if ((cond = strcnmp(w, p->word)) == 0)
p- >count ++; /* repeated word */
else if (cond < 0) /[* less than into left subtree */
p->left = addtree(p->left, w;
el se /[* greater than into right subtree */
p->right = addtree(p->right, w);
return p;

}
Storage for the new node is fetched by a routine t al | oc, which returns a pointer to a

free space suitable for holding a tree node, and the new word is copied into a hidden
space by st rdup. (We will discuss these routines in a moment.) The count isinitialized,
and the two children are made null. This part of the code is executed only at the leaves
of the tree, when a new node is being added. We have (unwisely) omitted error checking
on thevaluesreturned by st rdup and t al | oc.

treeprint printsthetreein sorted order; at each node, it printsthe left subtree (all the
words less than this word), then the word itself, then the right subtree (all the words
greater). If you feel shaky about how recursion works, simulatet r eepri nt asit operates
on thetree shown above.

/[* treeprint: in-order print of tree p */
void treeprint(struct tnode *p)
{

if (p !'= NULL) {
treeprint(p->left);
printf("%ld %\n", p->count, p->word);
treeprint(p->right);
}
}

A practical note: if the tree becomes ““unbalanced" because the words don't arrive in
random order, the running time of the program can grow too much. As a worst case, if
the words are already in order, this program does an expensive simulation of linear
search. There are generalizations of the binary tree that do not suffer from this wor st-
case behavior, but we will not describethem here.

133

Before leaving this example, it is also worth a brief digression on a problem related to
storage allocators. Clearly it's desirable that there be only one storage allocator in a
program, even though it allocates different kinds of objects. But if one allocator is to
processrequestsfor, say, pointerstochar sand pointerstostruct tnodes, two questions
arise. First, how does it meet the requirement of most real machines that objects of
certain types must satisfy alignment restrictions (for example, integers often must be
located at even addresses)? Second, what declarations can cope with the fact that an
allocator must necessarily return different kinds of pointers?

Alignment requirements can generally be satisfied easily, at the cost of some wasted
space, by ensuring that the allocator always returns a pointer that meets all alignment
restrictions. The al | oc of Chapter 5 does not guarantee any particular alignment, so we
will usethe standard library function mal | oc, which does. In Chapter 8 we will show one
way to implement nal | oc.

The question of the type declaration for a function like mal | oc is a vexing one for any
language that takes its type-checking seriously. In C, the proper method is to declare
that mal | oc returns a pointer to voi d, then explicitly coerce the pointer into the desired
type with a cast. mal | oc and related routines are declared in the standard header
<stdlib. h>. Thustal | oc can bewritten as

#i ncl ude <stdlib. h>

/* talloc: make a tnode */
struct tnode *talloc(void)

return (struct tnode *) malloc(sizeof(struct tnode));

}
st rdup merely copiesthestring given by itsargument into a safe place, obtained by a
call on mal | oc:

char *strdup(char *s) /* make a duplicate of s */

{

char *p;

p = (char *) malloc(strlen(s)+1); /* +1 for "\0" */
if (p !'= NULL)

strcpy(p, s);
return p;

}
mal | oc returnsNULL if no spaceisavailable; st rdup passesthat value on, leaving error-
handlingtoitscaller.

Storage obtained by calling mal | oc may befreed for re-use by callingf r ee; see Chapters
8and 7.

Exercise 6-2. Writea program that readsa C program and printsin alphabetical order
each group of variable names that are identical in the first 6 characters, but different
somewhere thereafter. Don't count words within strings and comments. Make 6 a
parameter that can be set from the command line.

Exercise 6-3. Write a crossreferencer that printsalist of all wordsin a document, and
for each word, a list of the line numbers on which it occurs. Remove noise words like
“the'" “and," and so on.

134

Exercise 6-4. Write a program that prints the distinct words in its input sorted into
decreasing order of frequency of occurrence. Precede each word by its count.

6.6 Table L ookup

In this section we will write the innards of a table-lookup package, to illustrate more
aspects of structures. This code is typical of what might be found in the symbol table
management routines of a macro processor or a compiler. For example, consider the
#def i ne statement. When alinelike

#define IN 1
is encountered, the name I N and the replacement text 1 are stored in a table. Later,
when thename| Nappearsin a statement like

state = IN;

it must bereplaced by 1.

There aretwo routines that manipulate the names and replacement texts. i nstal | (s, t)
records the name s and the replacement text t in atable; s and t are just character
strings. | ookup(s) searchesfor s inthetable, and returnsa pointer to the place whereit
wasfound, or NULL if it wasn't there.

The algorithm is a hash-search - the incoming name is converted into a small non-
negative integer, which isthen used to index into an array of pointers. An array element
points to the beginning of a linked list of blocks describing names that have that hash
value. It iSNULL if no names have hashed to that value.

= & T1AI1E
-

T N defn

0
e — mname

S defn

= g | == e

A block in the list is a structure containing pointers to the name, the replacement text,
and the next block in thelist. A null next-pointer marksthe end of thelist.

struct nlist { /* table entry: */
struct nlist *next; /* next entry in chain */
char *nane; /* defined name */
char *defn; /* replacenment text */

b
Thepointer array isjust

#def i ne HASHSI ZE 101

static struct nlist *hashtab[HASHSI ZE]; /* pointer table */
The hashing function, which is used by both | ookup and i nst al I , adds each character
value in the string to a scrambled combination of the previous ones and returns the

135

remainder modulo the array size. This is not the best possible hash function, but it is
short and effective.

/* hash: form hash value for string s */
unsi gned hash(char *s)

{
unsi gned hashval ;
for (hashval = 0; *s !="\0"; s++)
hashval = *s + 31 * hashval;
return hashval % HASHSI ZE;
}

Unsigned arithmetic ensuresthat the hash value isnon-negative.

The hashing process produces a starting index in thearray hasht ab; if thestringisto be
found anywhere, it will bein thelist of blocks beginning there. The search is performed
by | ookup. If I ookup finds the entry already present, it returns a pointer to it; if not, it
returnsNULL.

/* 1 ookup: look for s in hashtab */
struct nlist *lookup(char *s)
{

struct nlist *np;

for (np = hashtab[hash(s)]; np != NULL; np = np->next)

if (strcmp(s, np->nane) == 0)
return np; /* found */
return NULL; /* not found */

}
Thefor loopin| ookup isthestandard idiom for walking along a linked list:

for (ptr = head; ptr != NULL; ptr = ptr->next)

i nstal | uses| ookup to determine whether the name being installed is already present;
if so, the new definition will supersede the old one. Otherwise, a new entry is created.
i nstal | returnsNULL if for any reason thereisnoroom for a new entry.

struct nlist *lookup(char *);
char *strdup(char *);

/* install: put (name, defn) in hashtab */
struct nlist *install (char *name, char *defn)
{

struct nlist *np;
unsi gned hashval ;

if ((np = lookup(nanme)) == NULL) { /* not found */
np = (struct nlist *) malloc(sizeof (*np));
if (np == NULL || (np->nanme = strdup(nanme)) == NULL)
return NULL;
hashval = hash(nane);
np- >next = hashtab[hashval];
hasht ab[hashval] = np;

} else /* already there */

free((void *) np->defn); /*free previous defn */
if ((np->defn = strdup(defn)) == NULL)

return NULL;
return np;

136

Exercise 6-5. Write a function undef that will remove a name and definition from the
table maintained by | ookup andi nstal | .

Exer cise 6-6. Implement a simple version of the#def i ne processor (i.e., no arguments)
suitable for use with C programs, based on the routines of this section. You may also
find get ch and unget ch helpful.

6.7 Typedef

C provides a facility called t ypedef for creating new data type names. For example, the
declaration

typedef int Length;
makesthe nameLengt h asynonym for i nt . ThetypeLengt h can be used in declarations,
casts, etc., in exactly the same waysthat thei nt type can be:

Length | en, maxlen;
Length *lengths[];

Similarly, the declaration

typedef char *String;
makes St ri ng a synonym for char * or character pointer, which may then be used in
declarationsand casts:

String p, lineptr[MAXLINES], alloc(int);

int strecnp(String, String);

p = (String) malloc(100);
Notice that the type being declared in a t ypedef appearsin the position of a variable
name, not right after theword t ypedef . Syntactically, t ypedef islike the storage classes
extern, static, etc. We have used capitalized namesfor t ypedef s, to make them stand

out.

As a more complicated example, we could make t ypedef s for the tree nodes shown
earlier in thischapter:

typedef struct tnode *Treeptr;

typedef struct tnode { /* the tree node: */

char *word; /* points to the text */
int count; /* nunber of occurrences */
struct tnode *|eft; [* left child */

struct tnode *right; /* right child */
} Treenode;

This creates two new type keywords called Treenode (a structure) and Treeptr (a
pointer tothestructure). Then theroutinet al | oc could become

Treeptr talloc(void)

{

}
It must be emphasized that a t ypedef declaration does not create a new type in any

sense; it merely adds a new name for some existing type. Nor are there any new
semantics. variables declared this way have exactly the same properties as variables
whose declarations are spelled out explicitly. In effect, t ypedef islike #def i ne, except

return (Treeptr) nalloc(sizeof (Treenode));

137

that sinceit isinterpreted by the compiler, it can cope with textual substitutionsthat are
beyond the capabilities of the preprocessor. For example,

typedef int (*PFl)(char *, char *);
createsthetype PFI , for ““pointer to function (of two char * arguments) returningi nt ,"
which can be used in contextslike

PFI strcnp, nuncnp;
in the sort program of Chapter 5.

Besides purely aesthetic issues, there are two main reasonsfor usingt ypedef s. Thefirst
isto parameterize a program against portability problems. If t ypedef s areused for data
types that may be machine-dependent, only the typedefs need change when the
program is moved. One common situation isto use t ypedef names for various integer
guantities, then make an appropriate set of choices of short, i nt,and | ong for each host
machine. Typeslikesi ze_t and ptrdi ff_t from the standard library are examples.

The second purpose of typedef sisto provide better documentation for a program - a
typecalled Treept r may be easier to understand than one declared only asa pointer toa
complicated structure.

6.8 Unions

A union is a variable that may hold (at different times) objects of different types and
sizes, with the compiler keeping track of size and alignment requirements. Unions
provide a way to manipulate different kinds of data in a single area of storage, without
embedding any machine-dependent information in the program. They are analogous to
variant recordsin pascal.

Asan example such as might be found in a compiler symbol table manager, suppose that
a constant may be an int, a float, or a character pointer. The value of a particular
constant must be stored in a variable of the proper type, yet it is most convenient for
table management if the value occupies the same amount of storage and is stored in the
same place regardless of itstype. Thisisthe purpose of a union - a single variable that
can legitimately hold any of one of several types. The syntax isbased on structures:

union u_tag {
int ival;
float fval;
char *sval;

P
Thevariable u will be large enough to hold the largest of the three types; the specific size
is implementation-dependent. Any of these types may be assigned to u and then used in
expressions, so long as the usage is consistent: the type retrieved must be the type most
recently stored. It is the programmer's responsibility to keep track of which type is
currently stored in a union; the results are implementation-dependent if something is
stored asonetype and extracted as another.

Syntactically, member s of a union are accessed as

union-name. member

138

or
union-pointer- >member

just as for structures. If the variable utype is used to keep track of the current type
stored in u, then one might see code such as

if (utype == I NT)
printf("%l\n", u.ival);
if (utype == FLOAT)
printf("%\n", u.fval);
if (utype == STRI NG
printf("%\n", u.sval);
el se
printf("bad type % in utype\n", utype);
Unions may occur within structures and arrays, and vice versa. The notation for
accessing amember of a union in astructure (or vice versa) isidentical to that for nested

structures. For example, in the structure array defined by

struct {
char *nane;
int flags;
i nt utype;
uni on {
int ival;
float fval;
char *sval;
P
} synt ab[NSYM ;

themember i val isreferred to as

syntab[i].u.ival
and thefirst character of thestringsval by either of

*symtab[i]. u.sval

syntab[i].u.sval[0]
In effect, a union is a structure in which all member s have offset zer o from the base, the
structureis big enough to hold the “widest'" member, and the alignment is appropriate
for all of the types in the union. The same operations are permitted on unions as on
structures:. assignment to or copying as a unit, taking the address, and accessing a
member.

A union may only beinitialized with a value of the type of itsfirst member; thus union u
described above can only beinitialized with an integer value.

The storage allocator in Chapter 8 shows how a union can be used to force a variable to
be aligned on a particular kind of storage boundary.

6.9 Bit-fields

When storage space is at a premium, it may be necessary to pack several objectsinto a
single machine word; one common use is a set of single-bit flags in applications like
compiler symbol tables. Externally-imposed data formats, such as interfaces to
har dwar e devices, also often requirethe ability to get at piecesof aword.

139

Imagine a fragment of a compiler that manipulates a symbol table. Each identifier in a
program has certain information associated with it, for example, whether or not it is a
keyword, whether or not it is external and/or static, and so on. The most compact way to
encode such information isa set of one-bit flagsin asinglechar orint.

Theusual way thisisdoneisto define a set of “"masks" corresponding to the relevant bit
positions, asin

#defi ne KEYWORD 01
#def i ne EXTRENAL 02
#define STATIC 04

or

enum { KEYWORD = 01, EXTERNAL = 02, STATIC = 04 };
The numbers must be powers of two. Then accessing the bits becomes a matter of “bit-
fiddling" with the shifting, masking, and complementing operators that were described

in Chapter 2.

Certain idioms appear frequently:

flags | = EXTERNAL | STATIC
turnson the EXTERNAL and STATI Cbitsin 1 ags, while

flags & ~(EXTERNAL | STATIC);
turnsthem off, and

if ((flags & (EXTERNAL | STATIC)) == 0)
istrueif both bits ar e off.

Although these idioms are readily mastered, as an alternative C offers the capability of
defining and accessing fields within a word directly rather than by bitwise logical
operators. A hit-field, or field for short, is a set of adjacent bits within a single
implementation-defined storage unit that we will call a “word." For example, the
symbol table#def i nesabove could be replaced by the definition of threefields:

struct {
unsigned int is_keyword : 1;
unsigned int is_extern : 1;
unsigned int is_static : 1;
} flags;

This defines a variable table called f1 ags that contains three 1-bit fields. The number
following the colon represents the field width in bits. The fields are declared unsi gned
i nt toensurethat they are unsigned quantities.

Individual fields are referenced in the same way as other structure members:
flags.is_keyword, fl ags.is_extern, etc. Fields behave like small integers, and may
participatein arithmetic expressionsjust like other integers. Thusthe previous examples
may be written more naturally as

flags.is _extern = flags.is_static = 1;
toturn thebitson;

140

flags.is_extern = flags.is_static = 0;
to turn them off; and

if (flags.is_extern == 0 && flags.is_static == 0)

to test them.

Almost everything about fields is implementation-dependent. Whether a field may
overlap a word boundary is implementation-defined. Fields need not be names;
unnamed fields (a colon and width only) are used for padding. The special width 0 may
be used to force alignment at the next word boundary.

Fields are assigned left to right on some machines and right to left on others. Thismeans
that although fields are useful for maintaining internally-defined data structures, the
guestion of which end comes first has to be carefully considered when picking apart
exter nally-defined data; programs that depend on such things are not portable. Fields
may be declared only as i nts; for portability, specify si gned or unsi gned explicitly.
They are not arrays and they do not have addr esses, so the & operator cannot be applied
on them.

141

Chapter 7 - Input and Output

Input and output are not part of the C language itself, so we have not emphasized them
in our presentation thus far. Nonetheless, programs interact with their environment in
much more complicated ways than those we have shown before. In this chapter we will
describe the standard library, a set of functions that provide input and output, string
handling, storage management, mathematical routines, and a variety of other services
for C programs. Wewill concentrate on input and output

The ANSI standard defines these library functions precisely, so that they can exist in
compatible form on any system where C exists. Programs that confine their system
interactions to facilities provided by the standard library can be moved from one system
to another without change.

The properties of library functions are specified in more than a dozen headers; we have
already seen several of these, including <st di 0. h>, <stri ng. h>, and <ct ype. h>. We will
not present the entire library here, since we are more interested in writing C programs
that useit. Thelibrary isdescribed in detail in Appendix B.

7.1 Standard I nput and Output

Aswe said in Chapter 1, thelibrary implements a ssmple model of text input and output.
A text stream consists of a sequence of lines; each line ends with a newline character. If
the system doesn't operate that way, the library does whatever necessary to make it
appear asif it does. For instance, the library might convert carriage return and linefeed
to newline on input and back again on output.

The simplest input mechanism isto read one character at atimefrom the standard input,
normally the keyboard, with get char :

i nt getchar(void)
getchar returns the next input character each time it is called, or EOF when it
encounters end of file. The symbolic constant EOF is defined in <st di 0. h>. Thevalueis
typically -1, bus tests should be written in terms of EOF so as to be independent of the
specific value.

In many environments, a file may be substituted for the keyboard by using the <
convention for input redirection: if a program prog uses get char, then the command
line

prog <infile
causes prog to read charactersfrom i nfil e instead. The switching of the input is done
in such a way that prog itself is oblivious to the change; in particular, the string
“<infile" isnot included in the command-line argumentsin ar gv. Input switching is
also invisible if the input comes from another program via a pipe mechanism: on some
systems, the command line

142

ot herprog | prog
runsthe two programsot her pr og and pr og, and pipesthe standard output of ot her pr og
into the standard input for pr og.

Thefunction

i nt putchar(int)
isused for output: put char (c¢) putsthecharacter c onthest andard out put , which isby
default the screen. put char returns the character written, or EOF is an error occurs.
Again, output can usually bedirected to afilewith >filename: if pr og usesput char,

prog >outfile
will writethe standard output toout fi | e instead. If pipesare supported,

prog | anot herprog
putsthe standard output of pr og into the standard input of anot her pr og.

Output produced by print f also findsitsway to the standard output. Calls to put char
and printf may be interleaved - output happens in the order in which the calls are
made.

Each sourcefilethat refersto an input/output library function must contain theline

#i ncl ude <stdi o. h>
before the first reference. When the name is bracketed by < and > a search is made for
the header in a standard set of places (for example, on UNIX systems, typically in the
directory / usr/i ncl ude).

Many programs read only one input stream and write only one output stream; for such
programs, input and output with getchar, putchar, and printf may be entirely
adequate, and is certainly enough to get started. Thisis particularly trueif redirection is
used to connect the output of one program to the input of the next. For example,
consider the program I ower , which convertsitsinput to lower case:

#i ncl ude <stdi o. h>
#i ncl ude <ctype. h>

main() /* lower: convert input to | ower case*/

{

int c

while ((c = getchar()) != EOF)
put char (t ol ower(c));

return O;

}
The function t ol ower isdefined in <ctype. h>; it converts an upper case letter to lower
case, and returns other characters untouched. Aswe mentioned earlier, ““functions' like
get char and put char in <stdi o. h> and t ol ower in <ct ype. h> are often macros, thus
avoiding the overhead of a function call per character. We will show how thisisdonein
Section 8.5. Regardless of how the <ct ype. h> functions are implemented on a given
machine, programsthat use them are shielded from knowledge of the character set.

143

Exercise 7-1. Writeaprogram that convertsupper casetolower or lower caseto upper,
depending on the nameit isinvoked with, asfound in ar gv[0] .

7.2 Formatted Output - printf

The output function printf transates internal values to characters. We have used
printf informally in previous chapters. The description here covers most typical uses
but isnot complete; for thefull story, see Appendix B.

int printf(char *format, argl, arg2, ...);
printf converts, formats, and prints its arguments on the standard output under
control of thef or mat . It returnsthe number of charactersprinted.

The format string contains two types of objects. ordinary characters, which are copied
to the output stream, and conver sion specifications, each of which causes conversion and
printing of the next successive argument to pri nt f . Each conversion specification begins
with a % and ends with a conversion character. Between the % and the conversion
character theremay be, in order:

A minussign, which specifiesleft adjustment of the converted argument.

A number that specifies the minimum field width. The converted argument will
be printed in afield at least thiswide. If necessary it will be padded on theleft (or
right, if left adjustment iscalled for) to make up thefield width.

A period, which separatesthe field width from the precision.

A number, the precision, that specifies the maximum number of charactersto be
printed from a string, or the number of digits after the decimal point of a
floating-point value, or the minimum number of digitsfor an integer.

Anh if theinteger isto beprinted asashort,or | (letter el) if asal ong.

Conversion characters are shown in Table 7.1. If the character after the % is not a
conver sion specification, the behavior isundefined.

Table 7.1 Basic Printf Conversions

Character | Argument type; Printed As
d, i i nt ; decimal number
o i nt ; unsigned octal number (without a leading zer o)
. X i nt ; unsigned hexadecimal number (without aleading 0x or 0X), using
’ abcdef or ABCDEF for 10, ...,15.
u i nt ; unsigned decimal number
c i nt ; single character
S char *; print charactersfrom thestringuntil a'\ 0" or the number of
charactersgiven by the precision.
¢ doubl e; [-] m.dddddd, wherethe number of d'sisgiven by the precision
(default 6).
e E doubl e; [-] m.dddddde+/ - xx or [-] m.dddddde+/ - xx, wherethenumber of d's
’ isgiven by the precision (default 6).

0,G \doubl e; use % or % if theexponent islessthan -4 or areater than or equal to

144

the precision; otherwise use % . Trailing zeros and atrailing decimal point
arenot printed.

P voi d *; pointer (implementation-dependent representation).

\% \no argument isconverted; print a%

A width or precision may be specified as *, in which case the value is computed by
converting the next argument (which must bean i nt). For example, to print at most max
charactersfrom astrings,

printf("%*s", max, s);
Most of the format conversions have been illustrated in earlier chapters. One exception
isthe precision asit relatesto strings. The following table shows the effect of a variety of
specifications in printing “hello, world" (12 characters). We have put colons around
each field so you can seeit extent.

s hello, world:

1 9%40s: hello, world:

: % 10s: :hell o, wor:

1% 10s: hello, world:

1% 15s: hello, world:

1% 15s: hello, world :
1 945. 10s: : hel |l o, wor:
9% 15. 10s: :hell o, wor :

A warning: printf usesits first argument to decide how many arguments follow and
what their typeis. It will get confused, and you will get wrong answers, if there are not
enough arguments of if they are the wrong type. You should also be aware of the
difference between these two calls:

printf(s); /* FAILS if s contains % */

printf("%", s); /* SAFE */
Thefunction spri nt f doesthe same conversionsaspri ntf does, but storesthe output in
astring:

int sprintf(char *string, char *format, argl, arg2, ...);
sprintf formatsthe argumentsin argi, ar g2, etc.,, according to f or mat as before, but
placestheresult in st ri ng instead of the standard output; st ri ng must be big enough to
receivetheresult.

Exercise 7-2. Write a program that will print arbitrary input in a sensible way. As a
minimum, it should print non-graphic charactersin octal or hexadecimal according to
local custom, and break long text lines.

7.3 Variable-length Argument Lists

This section contains an implementation of a minimal version of pri nt f, to show how to
write a function that processes a variable-length argument list in a portable way. Since
we are mainly interested in the argument processing, m npri nt f will process the format
string and arguments but will call thereal pri ntf to dotheformat conversions.

Theproper declaration for printf is

145

int printf(char *fnt, ...)
where the declaration ... means that the number and types of these arguments may
vary. The declaration ... can only appear at the end of an argument list. Our

m nprintf isdeclared as

void mnprintf(char *fnt, ...)
sincewe will not return the character count that pri nt f does.

Thetricky bit ishow mi npri nt f walksalong the argument list when thelist doesn't even
have a name. The standard header <st dar g. h> contains a set of macro definitions that
define how to step through an argument list. The implementation of this header will
vary from machineto machine, but theinterfaceit presentsisuniform.

Thetypeva_list isused to declare a variable that will refer to each argument in turn;
in m nprintf, thisvariableis called ap, for “"argument pointer." The macro va_st art
initializes ap to point to the first unnamed argument. It must be called once before ap is
used. There must be at least one named argument; the final named argument is used by
va_start toget started.

Each call of va_ar g returns one argument and steps ap to the next; va_ar g uses atype
name to determine what type to return and how big a step to take. Finally, va_end does
whatever cleanup isnecessary. It must be called before the program returns.

These propertiesform the basis of our simplified pri nt f:

#i ncl ude <stdarg. h>

[* minprintf: mniml printf with variable argument |ist */
void mnprintf(char *fnt, ...)
{
va_list ap; /* points to each unnaned arg in turn */
char *p, *sval
int ival;
doubl e dval ;

va_start(ap, fnt); /* nake ap point to 1st unnaned arg */
for (p = fmt; *p; p++) {

if ("pt="%) {
put char (*p);
conti nue;
}
switch (*++p) {
case 'd':
ival = va_arg(ap, int);
printf("%", ival);
br eak;
case 'f':
dval = va_arg(ap, double);
printf("%", dval);
br eak;
case 's':
for (sval = va_arg(ap, char *); *sval; sval ++)
put char (*sval) ;
br eak;
defaul t:

put char (*p);
br eak;

146
}

va_end(ap); /* clean up when done */

}
Exercise 7-3. Revisem npri nt f to handle more of the other facilitiesof pri ntf.

7.4 Formatted I nput - Scanf

The function scanf is the input analog of printf, providing many of the same
conversion facilitiesin the opposite direction.

int scanf(char *format, ...)
scanf reads characters from the standard input, interprets them according to the
gpecification in for mat, and stores the results through the remaining arguments. The
format argument is described below; the other arguments, each of which must be a
pointer, indicate where the corresponding converted input should be stored. As with
printf,thissection isa summary of the most useful features, not an exhaustive list.

scanf stops when it exhausts its format string, or when some input fails to match the
control specification. It returns as its value the number of successfully matched and
assigned input items. This can be used to decide how many itemswer e found. On the end
of file, EOF isreturned; notethat thisisdifferent from O, which meansthat the next input
character does not match the first specification in the format string. The next call to
scanf resumes searching immediately after the last character already converted.

Thereisalso afunction sscanf that readsfrom astring instead of the standard input:

int sscanf(char *string, char *format, argl, arg2, ...)
It scans the string according to the format in f or mat and stores the resulting values
through ar g1, ar g2, etc. These arguments must be pointers.

The format string usually contains conversion specifications, which are used to control
conversion of input. Theformat string may contain:

Blanksor tabs, which are not ignored.

Ordinary characters (not %), which are expected to match the next non-white
space character of the input stream.

Conversion specifications, consisting of the character % an optional assignment
suppression character *, an optional number specifying a maximum field width,
an optional h, | or L indicating the width of the target, and a conversion
character.

A conversion specification directs the conversion of the next input field. Normally the
result is places in the variable pointed to by the corresponding argument. If assignment
suppression is indicated by the * character, however, the input field is skipped; no
assignment is made. An input field is defined as a string of non-white space characters;
it extends either to the next white space character or until the field width, is specified, is
exhausted. This impliesthat scanf will read across boundaries to find its input, since
newlines are white space. (White space characters are blank, tab, newline, carriage
return, vertical tab, and formfeed.)

147

The conversion character indicates the interpretation of the input field. The
corresponding argument must be a pointer, as required by the call-by-value semantics
of C. Conversion charactersareshown in Table7.2.

Table 7.2: Basic Scanf Conversions

Character | Input Data; Argument type
d decimal integer; i nt *

integer; i nt *. Theinteger may bein octal (leading0) or hexadecimal
(leading 0x or 0X).

o octal integer (with or without leading zero); i nt *
u unsigned decimal integer; unsi gned int *
X lhexadecimal integer (with or without leading 0x or 0x); i nt *
characters; char *. Thenext input characters (default 1) are placed at the
c indicated spot. The normal skip-over white spaceis suppressed; toread the

next non-white space character, use % s

character string (not quoted); char *, pointing to an array of characterslong
enough for the string and aterminating' \ 0 that will be added.

floating-point number with optional sign, optional decimal point and optional
exponent; f | oat *

e, f,g

% literal %; no assignment is made.

The conversion characters d, i, o, u, and x may be preceded by h to indicate that a
pointer to short rather than i nt appears in the argument list, or by | (letter €l) to
indicatethat a pointer tol ong appearsin the argument list.

Asafirst example, therudimentary calculator of Chapter 4 can bewritten with scanf to
do the input conversion:

#i ncl ude <stdi o. h>

main() /* rudinmentary cal culator */

{

doubl e sum v;

sum = 0O;

while (scanf("%f", &) == 1)
printf("\t% 2f\n", sum += v);

return O;

}
Suppose we want to read input linesthat contain dates of the form

25 Dec 1988
Thescanf statement is

i nt day, year;
char nont hnane[20] ;

scanf ("%l % %", &day, nonthnanme, &year);
No & isused with nont hname, Since an array nameisa pointer.

148

Literal characters can appear in the scanf format string; they must match the same
characters in the input. So we @uld read dates of the form mm dd/ yy with the scanf
Sstatement:

i nt day, nonth, year;

scanf ("%l/ %/ %d", &nmonth, &day, &year);
scanf ignores blanks and tabs in its format string. Furthermore, it skips over white
space (blanks, tabs, newlines, etc.) as it looks for input values. To read input whose
format is not fixed, it is often best to read a line at a time, then pick it apart with scanf .
For example, suppose we want to read lines that might contain a date in either of the
formsabove. Then we could write

while (getline(line, sizeof(line)) > 0) {

if (sscanf(line, "% % %", &day, nonthnane, &year) == 3)
printf("valid: %\n", line); /* 25 Dec 1988 form */

else if (sscanf(line, "%/ %/ %", &month, &day, &year) == 3)
printf("valid: %\n", line); /* nmdd/yy form*/

el se
printf("invalid: %\n", line); /* invalid form?*/

}
Calls to scanf can be mixed with calls to other input functions. The next call to any

input function will begin by reading thefirst character not read by scanf .

A final warning: the argumentsto scanf and sscanf must be pointers. By far the most
common error iswriting

scanf ("%", n);
instead of

scanf ("%", &n);
Thiserror isnot generally detected at compiletime.

Exercise 7-4. Writeaprivateversion of scanf analogoustoni npri nt f from theprevious
section.

Exer cise 5-5. Rewritethe postfix calculator of Chapter 4 to usescanf and/or sscanf to
do the input and number conversion.

7.5 File Access

The examples so far have all read the standard input and written the standard output,
which are automatically defined for a program by the local operating system.

The next step isto write a program that accesses a file that is not already connected to
the program. One program that illustrates the need for such operations is cat , which
concatenates a set of named files into the standard output. cat isused for printing files
on the screen, and as a general-purpose input collector for programs that do not have
the capability of accessing files by name. For example, the command

cat x.c y.c
printsthe contents of thefilesx. c andy. ¢ (and nothing else) on the standard output.

149

The question is how to arrange for the named files to be read - that is, how to connect
the external namesthat a user thinks of to the statementsthat read the data.

The rules are simple. Before it can be read or written, a file has to be opened by the
library function fopen. fopen takes an external name like x.c or y.c, does some
housekeeping and negotiation with the operating system (details of which needn't
concern us), and returnsa pointer to be used in subsequent readsor writes of thefile.

This pointer, called the file pointer, pointsto a structure that contains infor mation about
the file, such as the location of a buffer, the current character position in the buffer,
whether the file is being read or written, and whether errors or end of file have
occurred. Users don't need to know the details, because the definitions obtained from
<st di 0. h> include a structure declaration called FI LE. The only declaration needed for a
filepointer isexemplified by

FILE *fp;

FI LE *fopen(char *nane, char *npde);
This saysthat fp isa pointer to a FI LE, and f open returns a pointer to a FI LE. Notice
that FI LE is a type name, like i nt, not a structure tag; it is defined with a typedef .
(Details of how f open can beimplemented on the UNIX system aregiven in Section 8.5.)

Thecall tof open inaprogram is

fp = fopen(nane, node);
The first argument of fopen is a character string containing the name of the file. The
second argument isthe mode, also a character string, which indicates how oneintendsto
use the file. Allowable modes include read ('r"), write ("w'), and append (" a"). Some
systems distinguish between text and binary files; for the latter, a" b" must be appended
tothemode string.

If a file that does not exist is opened for writing or appending, it is created if possible.
Opening an existing file for writing causes the old contents to be discarded, while
opening for appending preserves them. Trying to read a file that does not exist is an
error, and there may be other causes of error aswell, like trying to read afile when you
don't have permission. If thereisany error, f open will return NULL. (The error can be
identified more precisaly; see the discussion of error-handling functions at the end of
Section 1in Appendix B.)

The next thing needed is a way to read or writethefile onceit is open. get c returnsthe
next character from afile; it needsthefile pointer totell it which file.

int getc(FILE *fp)
get c returnsthe next character from the stream referred to by f p; it returnsecr for end
of fileor error.

put ¢ isan output function:

int putc(int c, FILE *fp)

150

put ¢ writesthe character ¢ tothefile f p and returnsthe character written, or EOF if an
error occurs. Like getchar and putchar, getc and putc may be macros instead of
functions.

When a C program is started, the operating system environment is responsible for
opening three files and providing pointers for them. These files are the standard input,
the standard output, and the standard error; the corresponding file pointers are called
stdin,stdout,andstderr,and aredeclared in <st di 0. h>. Normally st di n isconnected
to the keyboard and stdout and stderr are connected to the screen, but stdi n and
st dout may beredirected tofilesor pipesasdescribed in Section 7.1.

get char and put char can be defined in terms of getc, putc, stdin, and stdout as
follows:

#defi ne getchar () getc(stdin)
#defi ne putchar(c) putc((c), stdout)

For formatted input or output of files, the functionsfscanf and f pri ntf may be used.
These areidentical to scanf and pri nt f, except that the first argument is a file pointer
that specifiesthefileto beread or written; the format string isthe second argument.

int fscanf(FILE *fp, char *format, ...)
int fprintf(FILE *fp, char *format, ...)

With these preliminaries out of the way, we are now in a position to write the program
cat to concatenate files. The design is one that has been found convenient for many
programs. If there are command-line arguments, they are interpreted as filenames, and
processed in order. If thereareno arguments, the standard input is processed.

#i ncl ude <stdi o. h>

/* cat: concatenate files, version 1 */
mai n(int argc, char *argv[])
{

FILE *fp;

void filecopy(FILE *, FILE *)

if (argc == 1) /* no args; copy standard i nput */
filecopy(stdin, stdout);
el se
whil e(--argc > 0)
if ((fp = fopen(*++argv, "r")) == NULL) {
printf("cat: can't open %\n, *argv);
return 1;
} else {
filecopy(fp, stdout);
fclose(fp);
}

return O;

[* filecopy: <copy file ifp to file ofp */
void filecopy(FILE *ifp, FILE *ofp)
{

int c;

while ((c = getc(ifp)) !'= EOF)
putc(c, ofp);

151

The file pointers stdin and st dout are objects of type FI LE *. They are constants,
however, not variables, soit isnot possibleto assign to them.

Thefunction

int fclose(FILE *fp)

istheinverse of f open, it breaks the connection between thefile pointer and the exter nal
name that was established by f open, freeing the file pointer for another file. Since most
oper ating systems have some limit on the number of filesthat a program may have open
simultaneoudly, it's a good idea to free the file pointers when they are no longer needed,
aswedid in cat . Thereisalso another reason for f cl ose on an output file- it flushesthe
buffer in which put ¢ is collecting output. f cl ose is called automatically for each open
file when a program terminates normally. (You can close st di n and st dout if they are
not needed. They can also bereassigned by thelibrary function f r eopen.)

7.6 Error Handling - Stderr and EXxit

The treatment of errorsin cat isnot ideal. Thetroubleisthat if one of the filescan't be
accessed for some reason, the diagnostic is printed at the end of the concatenated output.
That might be acceptable if the output is going to a screen, but not if it'sgoing into a file
or into another program via a pipdline.

To handle this situation better, a second output stream, called st derr, isassigned to a
program in the same way that stdin and stdout are. Output written on stderr
normally appearson the screen even if the standard output isredirected.

Let usrevisecat towriteitserror messageson thestandard error.

#i ncl ude <stdi o. h>

/* cat: concatenate files, version 2 */
mai n(int argc, char *argv[])
{
FILE *fp;
void filecopy(FILE *, FILE *);
char *prog = argv[0]; /* program nanme for errors */

if (argc == 1) /* no args; copy standard input */
filecopy(stdin, stdout);
el se
while (--argc > 0)
if ((fp = fopen(*++argv, "r")) == NULL) {

fprintf(stderr, "%: can't open %\n",
prog, *argv);
exit(1);
} else {
filecopy(fp, stdout);
fclose(fp);

}
if (ferror(stdout)) {
fprintf(stderr, "%: error witing stdout\n", prog);
exit(2);

exit(0);

152

The program signals errors in two ways. First, the diagnostic output produced by
fprintf goesto stderr, soit findsitsway to the screen instead of disappearing down a
pipeline or into an output file. We included the program name, from ar gv[0], in the
message, so if this program isused with others, the source of an error isidentified.

Second, the program uses the standard library function exit, which terminates
program execution when it is called. The argument of exit is available to whatever
process called this one, so the success or failure of the program can be tested by another
program that uses this one as a sub-process. Conventionally, a return value of 0 signals
that all iswell; non-zero values usually signal abnormal situations. exi t callsf cl ose for
each open output file, to flush out any buffered output.

Within mai n, ret ur n expr is equivalent to exi t (expr). exi t hasthe advantagethat it can
be called from other functions, and that callsto it can be found with a pattern-sear ching
program likethosein Chapter 5.

Thefunction f error returnsnon-zeroif an error occurred on the stream f p.

int ferror(FILE *fp)
Although output errors are rare, they do occur (for example, if a disk fills up), so a
production program should check thisaswell.

Thefunction f eof (FI LE *) isanalogousto ferror; it returnsnon-zero if end of file has
occurred on the specified file.

int feof (FILE *fp)
We have generally not worried about exit statusin our small illustrative programs, but
any serious program should take careto return sensible, useful statusvalues.

7.7 Line Input and Output

The standard library provides an input and output routine f get s that is similar to the
get | i ne function that we have used in earlier chapters:

char *fgets(char *line, int maxline, FILE *fp)
f get s reads the next input line (including the newline) from file f p into the character
array | i ne; at most max! i ne- 1 characterswill beread. Theresulting line is terminated
with '\ 0' . Normally f gets returns|ine; on end of file or error it returns NULL. (Our
get | i ne returnsthelinelength, which isa more useful value; zero meansend of file.)

For output, the function f puts writes a string (which need not contain a newline) to a
file

int fputs(char *line, FILE *fp)
It returnsEOF if an error occurs, and non-negative otherwise.

The library functions gets and puts are similar to fgets and f puts, but operate on
st di n and st dout . Confusingly, get s deletestheterminating' \ n' , and put s addsit.

153

To show that there is nothing special about functions like f gets and f put s, here they
are, copied from the standard library on our system:

/* fgets: get at nobst n chars fromiop */
char *fgets(char *s, int n, FILE *iop)

{

regi ster int c;

regi ster char *cs;

CS = s;

while (--n > 0 & (c = getc(iop)) != EOF)

if ((*cs++ =¢) == "\n")
br eak;

*cs = "\0';

return (c == EOF &k cs ==s) ? NULL : s;
}

/* fputs: put string s on file iop */
int fputs(char *s, FILE *iop)

o
Int c;
while (c = *s++)
putc(c, iop);
return ferror(iop) ? EOF : O;
}

For no obvious reason, the standard specifies different return values for ferror and
f puts.

It iseasy toimplement our get | i ne fromf get s:

/* getline: read a line, return length */
int getline(char *line, int max)

if (fgets(line, max, stdin) == NULL)
return O;

el se
return strlen(line);

}
Exercise 7-6. Write a program to compar e two files, printing the first line where they
differ.

Exercise 7-7. Modify the pattern finding program of Chapter 5 to takeitsinput from a
set of named files or, if no files are named as arguments, from the standard input.
Should the file name be printed when a matching lineisfound?

Exercise 7-8. Write a program to print a set of files, starting each new one on a new
page, with atitleand arunning page count for each file.

7.8 Miscellaneous Functions

The standard library provides a wide variety of functions. This section is a brief
synopsis of the most useful. More details and many other functions can be found in

Appendix B.

154
7.8.1 String Operations

We have already mentioned the string functions strl en, strcpy, strcat, and strcnp,
found in <stri ng. h>. Inthefollowing,s andt arechar *'s,andc andn areints.

strcat(s,t) concatenatet toend of s

strncat (s,t,n) concatenaten charactersoft toend of s

strcmp(s, t) return negative, zero, or positivefors < t,s ==t,s >t
strncnp(s,t, n) sameasstrcnp but only in first n characters
strcpy(s,t) copyt tos

strncpy(s,t,n) copy at most n charactersoft tos

strlen(s) return length of s

strchr(s,c) return pointer tofirstc ins, or NULL if not present
strrchr(s,c) return pointer tolast ¢ ins, or NULL if not present

7.8.2 Character Class Testing and Conversion

Several functions from <ctype. h> perform character tests and conversions. In the
following, c isan i nt that can berepresented asan unsi gned char or EOF. Thefunction
returnsint.

i sal pha(c) non-zeroif c isalphabetic, O if not

i supper (c) non-zeroif c isupper case, O if not

i sl ower (c) non-zeroif c islower case, 0if not

i sdigit(c) non-zeroif c isdigit, Oif not

i sal nun(c) non-zeroifi sal pha(c) orisdigit(c),Oif not

i sspace(c) non-zeroif c isblank, tab, newline, return, formfeed, vertical tab
t oupper (c) returnc converted to upper case

tol ower (c) returnc converted tolower case

7.8.3 Ungetc

The standard library provides a rather restricted version of the function unget ch that
wewrotein Chapter 4; it iscalled unget c.

int ungetc(int c, FILE *fp)
pushes the character ¢ back onto file f p, and returns either c, or ECF for an error. Only
one character of pushback is guaranteed per file. unget c may be used with any of the
input functionslikescanf , get c, or get char.

7.8.4 Command Execution

Thefunction syst em(char *s) executesthe command contained in the character string
s, then resumes execution of the current program. The contents of s depend strongly on
thelocal operating system. Asatrivial example, on UNIX systems, the statement

system("date");

155

causes the program dat e to be run; it prints the date and time of day on the standard
output. syst emreturns a system-dependent integer status from the command executed.
In the UNIX system, the statusreturn isthevaluereturned by exi t .

7.8.5 Storage M anagement

The functionsmal | oc and cal | oc obtain blocks of memory dynamically.

void *malloc(size t n)
returns a pointer to n bytes of uninitialized storage, or NULL if the request cannot be
satisfied.

void *calloc(size t n, size_ t size)
returns a pointer to enough free space for an array of n objects of the specified size, or
NULL if thereguest cannot be satisfied. The storageisinitialized to zero.

The pointer returned by nal | oc or cal | oc has the proper alignment for the object in
guestion, but it must be cast into the appropriatetype, asin

int *ip;

ip = (int *) calloc(n, sizeof(int));
free(p) frees the space pointed to by p, where p was originally obtained by a call to
mal | oc or cal | oc. Therearenorestrictionson theorder in which spaceisfreed, but it is
aghastly error to free something not obtained by callingmal | oc or cal | oc.

It isalso an error to use something after it has been freed. A typical but incorrect piece
of codeisthisloop that freesitemsfrom alist:

for (p = head; p !'= NULL; p = p->next) /* WRONG */
free(p);
Theright way isto save whatever isneeded before freeing:

for (p = head; p !'= NULL; p = q) {
q = p->next;
free(p);

}
Section 8.7 shows the implementation of a storage allocator like mal | oc, in which

allocated blocks may befreed in any order.

7.8.6 Mathematical Functions

There are more than twenty mathematical functions declared in <mat h. h>; here are
some of the more frequently used. Each takes one or two doubl e arguments and returns
adoubl e.

sin(x) sineof x, x in radians
cos(x) cosine of x, X in radians
atan2(y, x) arctangent of y/x, in radians
exp(x) exponential function €*

I og(x) natural (base €) logarithm of x (x>0)

156

l 0g10(x) common (base 10) logarithm of x (x>0)
pow(x,y) x’

sqrt(x) squareroot of x (x>0)

fabs(x) absolute value of x

7.8.7 Random Number generation

Thefunction r and() computes a sequence of pseudo-random integersin therange zero
to RAND_MAX, which isdefined in <st dl i b. h>. Oneway to produce random floating-point
numbersgreater than or equal to zero but lessthan oneis

#define frand() ((double) rand() / (RAND _MAX+1.0))
(If your library already providesa function for floating-point random numbers, it is
likely to have better statistical propertiesthan thisone.)

The function srand(unsi gned) sets the seed for rand. The portable implementation of
rand and sr and suggested by the standard appearsin Section 2.7.

Exercise 7-9. Functionslikei supper can beimplemented to save space or to savetime.
Exploreboth possibilities.

157

Chapter 8 - The UNIX System I nterface

The UNIX operating system provides its services through a set of system calls, which are
in effect functions within the operating system that may be called by user programs.
This chapter describes how to use some of the most important system calls from C
programs. If you use UNI X, this should be directly helpful, for it is sometimes necessary
to employ system calls for maximum efficiency, or to access some facility that is not in
the library. Even if you use C on a different operating system, however, you should be
able to glean insight into C programming from studying these examples, although
details vary, similar code will be found on any system. Since the ANSI C library isin
many cases modeled on UNIX facilities, this code may help your understanding of the
library aswell.

This chapter is divided into three major parts. input/output, file system, and storage
allocation. The first two parts assume a modest familiarity with the external
characteristicsof UNIX systems.

Chapter 7 was concerned with an input/output interface that is uniform across
operating systems. On any particular system theroutines of the standard library haveto
be written in terms of the facilities provided by the host system. In the next few sections
we will describe the UNIX system calls for input and output, and show how parts of the
standard library can beimplemented with them.

8.1 File Descriptors

In the UNIX operating system, all input and output is done by reading or writing files,
because all peripheral devices, even keyboard and screen, are files in the file system.
This means that a single homogeneous interface handles all communication between a
program and peripheral devices.

In the most general case, before you read and write afile, you must inform the system of
your intent to do so, a process called opening thefile. If you are going to writeon afileit
may also be necessary to create it or to discard its previous contents. The system checks
your right to do so (Does the file exist? Do you have permission to accessit?) and if all is
well, returns to the program a small non-negative integer called a file descriptor.
Whenever input or output is to be done on the file, the file descriptor is used instead of
the nameto identify thefile. (A file descriptor isanalogousto thefile pointer used by the
standard library, or to the file handle of MS-DOS.) All information about an open fileis
maintained by the system; the user program refersto thefile only by thefile descriptor.

Since input and output involving keyboard and screen is so common, special
arrangements exist to make this convenient. When the command interpreter (the
“shell'') runs a program, threefiles are open, with file descriptors 0, 1, and 2, called the
standard input, the standard output, and the standard error. If a program reads O and
writes 1 and 2, it can do input and output without worrying about opening files.

Theuser of aprogram can redirect 1/0 to and from fileswith < and >:

158

prog <infile >outfile
In this case, the shell changes the default assignments for the file descriptors 0 and 1 to
the named files. Normally file descriptor 2 remains attached to the screen, so error
messages can go there. Similar observations hold for input or output associated with a
pipe. In all cases, the file assgnments are changed by the shell, not by the program. The
program does not know wher e itsinput comes from nor whereits output goes, so long as
it usesfileOfor input and 1 and 2 for output.

8.2Low Level I/0 - Read and Write

Input and output uses the read and write system calls, which are accessed from C
programs through two functions called r ead and wr i t e. For both, thefirst argument isa
file descriptor. The second argument is a character array in your program where the
data isto go to or to come from. The third argument is the number is the number of
bytesto betransferred.

int nread = read(int fd, char *buf, int n);
int nwitten = wite(int fd, char *buf, int n);

Each call returns a count of the number of bytestransferred. On reading, the number of
bytes returned may be less than the number requested. A return value of zero bytes
implies end of file, and - 1 indicates an error of some sort. For writing, the return value
is the number of bytes written; an error has occurred if thisisn't equal to the number
requested.

Any number of bytes can beread or written in one call. The most common values are 1,
which means one character at a time (""unbuffered''), and a number like 1024 or 4096
that corresponds to a physical block size on a peripheral device. Larger sizes will be
mor e efficient because fewer system callswill be made.

Putting these facts together, we can write a ssimple program to copy its input to its
output, the equivalent of the file copying program written for Chapter 1. This program
will copy anything to anything, since the input and output can be redirected to any file
or device.

#include "syscalls.h"

main() /* copy input to output */

{
char buf [BUFSI Z] ;

int n;

while ((n = read(0, buf, BUFSIZ)) > 0)
write(l, buf, n);
return O;

}
We have collected function prototypes for the system callsinto a file called syscal I s. h

sowe can includeit in the programs of thischapter. Thisnameisnot standard, however.

The parameter BUFSI z isalso defined in syscal | s. h; itsvalueisa good sizefor thelocal
system. If the file size is not a multiple of BUFSI z, some read will return a smaller
number of bytesto bewritten by wri t e; thenext call tor ead after that will return zero.

159

It isinstructiveto see how read and wr i t e can be used to construct higher-level routines
like getchar, putchar, etc. For example, here is a version of getchar that does
unbuffered input, by reading the standard input one character at atime.

#include "syscalls.h"

/* getchar: unbuffered single character input */
i nt getchar(void)

char c;

return (read(0, &c, 1) == 1) ? (unsigned char) c : ECF
}
c must beachar, becauser ead needsa character pointer. Castingc tounsi gned char in

thereturn statement eliminates any problem of sign extension.

The second version of get char does input in big chunks, and hands out the characters
oneat atime.

#include "syscalls.h"

/* getchar: sinple buffered version */
i nt getchar(void)

static char buf[BUFSI Z];
static char *bufp = buf;
static int n = 0;

if (n==0) { /* buffer is enpty */
n = read(0, buf, sizeof buf);
bufp = buf;

}

return (--n >= 0) ? (unsigned char) *bufp++ : EOCF
}
If these versions of get char were to be compiled with <st di o. h> included, it would be

necessary to #undef thenameget char in caseit isimplemented asa macro.

8.3 Open, Creat, Close, Unlink

Other than the default standard input, output and error, you must explicitly open files
in order toread or writethem. There aretwo system callsfor this, open and creat [sic].

open israther like the f open discussed in Chapter 7, except that instead of returning a
file pointer, it returns afile descriptor, which isjust an i nt . open returns- 1 if any error
occurs.

#i ncl ude <fcntl. h>

int fd;
i nt open(char *nane, int flags, int perns);

fd = open(nane, flags, perns);

160

As with f open, the name argument is a character string containing the filename. The
second argument, f 1 ags, isan i nt that specifies how the file is to be opened; the main
valuesare

O_RDONLY open for reading only
O_VRONLY open for writing only
O_RDWR open for both reading and writing

These constants are defined in <fcntl.h> on System V UNIX systems, and in
<sys/file. h>on Berkeley (BSD) versions.

Toopen an existing filefor reading,

fd = open(nanme, O RDONLY, 0);
Theper ns argument isalways zer o for the uses of open that we will discuss.

Itisan error totry to open afilethat does not exist. The system call cr eat isprovided to
create new files, or tore-writeold ones.

int creat(char *name, int perms);

fd = creat(nane, perms);
returns a file descriptor if it was able to create the file, and - 1 if not. If the file already
exists, creat will truncateit to zero length, ther eby discarding its previous contents; it is
not an error tocr eat afilethat already exists.

If the file does not already exist, creat createsit with the permissions specified by the
per ms argument. In the UNIX file system, there are nine bits of permission information
associated with a filethat control read, write and execute access for the owner of thefile,
for the owner's group, and for all others. Thus a three-digit octal number is convenient
for specifying the permissions. For example, 0775 specifies read, write and execute
permission for the owner, and read and execute permission for the group and everyone
else.

Toillustrate, hereisa simplified version of the UNIX program cp, which copies onefile
to another. Our version copies only one file, it does not permit the second argument to
be adirectory, and it invents permissionsinstead of copying them.

#incl ude <stdio. h>

#include <fcntl. h>

#include "syscalls.h"

#defi ne PERMS 0666 /* RWfor owner, group, others */

void error(char *, ...);

/* cp: copy flto f2 */
mei n(int argc, char *argv[])
{

int f1, f2, n;

char buf [BUFSI Z] ;

if (argc !'= 3)
error("Usage: cp fromto")

161

if ((f1 = open(argv[1], O RDONLY, 0)) == -1)
error("cp: can't open %", argv[1l]);
if ((f2 = creat(argv[2], PERVB)) == -1)

error("cp: can't create %s, node %30",
argv[2], PERMS);
while ((n = read(fl1, buf, BUFSIZ)) > 0)
if (wite(f2, buf, n) !'=n)
error("cp: wite error on file %", argv[2]);
return O;

}
This program creates the output file with fixed permissions of 0666. With the st at

system call, described in Section 8.6, we can determine the mode of an existing file and
thus givethe same mode to the copy.

Notice that the function error iscalled with variable argument lists much like printf.
The implementation of error illustrates how to use another member of the printf
family. The standard library function vprintf islike printf except that the variable
argument list is replaced by a single argument that has been initialized by calling the
va_start macro. Similarly, vfprintf andvsprintf matchfprintf andsprintf.

#i ncl ude <stdi o. h>
#i ncl ude <stdarg. h>

/* error: print an error nmessage and die */
void error(char *fnt, ...)

{

va_|ist args;

va_start(args, fnt);

fprintf(stderr, "error: ");

vprintf(stderr, fnt, args);

fprintf(stderr, "\n");

va_end(args);

exit(1);

}

There is a limit (often about 20) on the number of files that a program may open
simultaneously. Accordingly, any program that intends to process many files must be
prepared to re-use file descriptors. The function cl ose(int fd) breaksthe connection
between a file descriptor and an open file, and freesthe file descriptor for use with some
other file; it correspondsto f cl ose in the standard library except that thereis no buffer
to flush. Termination of a program via exi t or return from the main program closes all
open files.

The function unlink(char *nane) removes the file name from the file system. It
correspondsto the standard library function r enove.

Exercise 8-1. Rewrite the program cat from Chapter 7usingread, wite, open, and

cl ose instead of their standard library equivalents. Perform experiments to determine
therelative speeds of the two versions.

8.4 Random Access - L seek

Input and output are normally sequential: each read or wri t e takes place at a position
in the file right after the previous one. When necessary, however, a file can be read or

162

written in any arbitrary order. The system call | seek providesaway to move around in
afilewithout reading or writing any data:

long | seek(int fd, long offset, int origin);
sets the current position in the file whose descriptor is fd to of f set, which is taken
relative to the location specified by ori gi n. Subsequent reading or writing will begin at
that position. ori gi n can be 0, 1, or 2 to specify that of f set isto be measured from the
beginning, from the current position, or from the end of the file respectively. For
example, to append to a file (the redirection >> in the UNIX shell, or "a" for fopen),
seek to the end beforewriting:

| seek(fd, OL, 2);
To get back to thebeginning (""rewind'),

| seek(fd, OL, 0);
Notice the oL argument; it could also be written as (1 ong) 0or just as 0 if | seek is
properly declared.

With | seek, it is possible to treat files more or less like arrays, at the price of slower
access. For example, the following function reads any number of bytes from any
arbitrary placein afile. It returnsthe number read, or - 1 on error.

#include "syscalls.h"

/*get: read n bytes from position pos */
int get(int fd, long pos, char *buf, int n)

if (lseek(fd, pos, 0) >=0) /* get to pos */
return read(fd, buf, n);

el se
return -1;

}
Thereturn value from | seek isalong that gives the new position in thefile, or - 1 if an
error occurs. The standard library function fseek is similar to | seek except that the
first argument isaFl LE * and thereturnisnon-zeroif an error occurred.

8.5 Example - An implementation of Fopen and Getc

Let usillustrate how some of these pieces fit together by showing an implementation of
the standard library routinesf open and get c.

Recall that files in the standard library are described by file pointers rather than file
descriptors. A file pointer is a pointer to a structure that contains several pieces of
information about the file: a pointer to a buffer, so the file can be read in large chunks;
a count of the number of characters left in the buffer; a pointer to the next character
position in the buffer; the file descriptor; and flags describing read/write mode, error
status, etc.

The data structure that describes a file is contained in <st di o. h>, which must be
included (by #include) in any source file that uses routines from the standard
input/output library. It is also included by functions in that library. In the following
excerpt from a typical <st di 0. h>, names that are intended for use only by functions of

163

the library begin with an underscore so they are less likely to collide with namesin a
user'sprogram. Thisconvention isused by all standard library routines.

#define NULL 0

#define EOF (-1)

#def i ne BUFSI Z 1024

#define OPEN_MAX 20 /* max #files open at once */

typedef struct _iobuf {

int cnt; /* characters left */
char *ptr; /* next character position */
char *base; /* location of buffer */
int flag; /* mode of file access */
int fd; /* file descriptor */
} FILE;

extern FILE _i ob[OPEN_MAX] ;

#define stdin (& iob[0])
#define stdout (& iob[1])
#define stderr (& iob[2])

enum _fl ags {
_READ = 01, [* file open for reading */
_WRITE = 02, [* file open for witing */
_UNBUF = 04, [* file is unbuffered */
_EOF = 010, /* EOF has occurred on this file */
_ERR = 020 /* error occurred on this file */

b
int _fillbuf(FILE *);
int _flushbuf(int, FILE *);

#define feof (p) ((p)->flag & _ECF) !
#define ferror(p) ((p)->flag & _ERR) !
#define fil eno(p) ((p)->fd)

0)

#define getc(p) (--(p)->cnt >= 0\

? (unsigned char) *(p)->ptr++ : _fillbuf(p))
#define putc(x,p) (--(p)->cnt >= 0 \

? *(p)->ptr++ = (x) : _flushbuf((x),p))

#defi ne getchar () getc(stdin)
#define putcher(x) putc((x), stdout)

The get ¢ macro normally decrements the count, advances the pointer, and returns the
character. (Recall that a long #def i ne is continued with a backslash.) If the count goes
negative, however, get c callsthe function _fil | buf to replenish the buffer, re-initialize
the structure contents, and return a character. The characters are returned unsi gned,
which ensuresthat all characterswill be positive.

Although we will not discuss any details, we have included the definition of put ¢ to show
that it operates in much the same way as get c, calling a function _f | ushbuf when its
buffer isfull. We have also included macros for accessing the error and end-of-file status
and thefile descriptor.

The function f open can now be written. Most of f open is concerned with getting thefile
opened and positioned at the right place, and setting the flag bits to indicate the proper
state. f open does not allocate any buffer space; thisisdone by _fil | buf when thefileis
first read.

#include <fcntl. h>
#include "syscalls.h"

#defi ne PERMS 0666 /* RWfor owner, group, others */

FI LE *fopen(char *nane, char *nopde)

int fd;
FILE *fp;
if (*rode !'="r' && *nmode !="'wW && *node !=
return NULL;
for (fp = _iob; fp < _iob + OPEN_MAX; fp++)
if ((fp->flag & (_READ| WRITE)) == 0)
br eak; /* found free slot */

a')

if (fp >= _iob + OPEN_MAX) /* no free slots */

return NULL;

if (*nrode == 'w)
fd = creat(nane, PERMS);
else if (*node == "a') {
if ((fd = open(nane, O WRONLY, 0)) == -1)
fd = creat(nane, PERMS);
| seek(fd, OL, 2);
} else
fd = open(nanme, O RDONLY, 0);

if (fd == -1) /* couldn't access name */
return NULL;

fp->fd = fd;

fp->cnt = 0;

f p- >base = NULL;

fp->flag = (*npde == 'r') ? _READ : _WRITE;

return fp;

}

164

Thisversion of f open doesnot handle all of the access mode possibilities of the standard,
though adding them would not take much code. In particular, our fopen does not
recognizethe b'' that signals binary access, since that is meaningless on UNI X systems,

NN

nor the "+" that permitsboth reading and writing.

The first call to getc for a particular file finds a count of zero, which forces a call of
fillbuf. If _fillbuf finds that the file is not open for reading, it returns ECF

i_mmediately. Otherwise, it triesto allocate a buffer (if reading isto be buffered).

Oncethe buffer isestablished, _fillbuf callsread tofill it, setsthe count and pointers,
and returns the character at the beginning of the buffer. Subsequent callsto _fi I | buf

will find a buffer allocated.

#include "syscalls.h"

[* _fillbuf: allocate and fill input buffer */
int _fillbuf(FILE *fp)
{
i nt bufsize;
if ((fp->flag& _READ| _EOF_ERR)) != _READ)
return EOF
bufsize = (fp->flag & _UNBUF) ? 1 : BUFSI Z;
if (fp->base == NULL) /* no buffer yet */

if ((fp->base = (char *) mall oc(bufsize))
return EOF; /* can't get buffer

*/

NULL)

165

fp->ptr f p- >base;
f p- >cnt read(fp->fd, fp->ptr, bufsize);
if (--fp->cnt < 0) {
if (fp->cnt == -1)
fp->flag | = _ECF
el se
fp->flag | = _ERR
fp->cnt = 0;
return EOF

}

return (unsigned char) *fp->ptr++;

}
The only remaining loose end is how everything gets started. The array _i ob must be

defined and initialized for st di n, st dout and st derr:

FI LE _i ob[OPEN_MAX] = { [* stdin, stdout, stderr */
{ 0, (char *) 0, (char *) 0, _READ, 0 },
{ 0, (char *) 0, (char *) 0, WRITE, 1},
{ 0, (char *) 0, (char *) 0, WRITE, | _UNBUF, 2 }
1
Theinitialization of the f | ag part of the structure showsthat st di n istoberead, st dout
isto bewritten, and st derr isto bewritten unbuffered.

Exercise 8-2. Rewritef open and _fi | | buf with fieldsinstead of explicit bit operations.
Compar e code size and execution speed.

Exercise 8-3. Design and write_f | ushbuf,ffl ush,andfcl ose.

Exer cise 8-4. Thestandard library function

int fseek(FILE *fp, long offset, int origin)
isidentical to | seek except that f p isafile pointer instead of afile descriptor and return
value is an int status, not a position. Write fseek. Make sure that your fseek
coor dinates properly with the buffering done for the other functionsof thelibrary.

8.6 Example - Listing Directories

A different kind of file system interaction is sometimes called for - determining
information about a file, not what it contains. A directory-listing program such as the
UNIX command | s is an example - it prints the names of files in a directory, and,
optionally, other information, such as sizes, permissions, and so on. The MS-DOS di r
command isanalogous.

Since a UNIX directory isjust afile, | s need only read it to retrieve the filenames. But is
is necessary to use a system call to access other information about a file, such asits size.
On other systems, a system call may be needed even to access filenames; thisisthe case
on MS-DOS for instance. What we want is provide access to the information in a
relatively system-independent way, even though the implementation may be highly
system-dependent.

Wewill illustrate some of thisby writing a program called f si ze. f si ze isa special form
of | s that printsthe sizes of all files named in its commandline argument list. If one of
the filesis a directory, fsi ze appliesitsalf recursively to that directory. If there are no
argumentsat all, it processesthe current directory.

166

Let us begin with a short review of UNIX file system structure. A directory isafilethat
contains a list of filenames and some indication of where they are located. The
“location' is an index into another table called the “inode list."" The inode for afileis
where all information about the file except its name is kept. A directory entry generally
consists of only two items, the filename and an inode number .

Regrettably, the format and precise contents of a directory are not the same on all
versions of the system. So we will divide the task into two piecesto try to isolate the non-
portable parts. The outer level defines a structure called a Di rent and three routines
opendi r, readdi r, and cl osedi r to provide system-independent accessto the name and
inode number in a directory entry. We will write f si ze with thisinterface. Then we will
show how to implement these on systems that use the same directory structure as
Version 7 and System V UNI X; variants are | eft as exer cises.

TheDi rent structure containsthe inode number and the name. The maximum length of
a filename component is NAME_MAX, which is a system-dependent value. opendi r returns
a pointer to a structure called DI R, analogous to FI LE, which is used by readdi r and
cl osedi r. Thisinformation iscollected into afile called di r ent . h.

#def i ne NAME_MAX 14 /* longest filename conponent; */
/* system dependent */

typedef struct ({ /* portable directory entry */
l ong ino; /* inode numnber */
char nanme[NAVE_MAX+1] ; /* nanme + '\0' term nator */
} Dirent;
typedef struct ({ /* miniml DR no buffering, etc. */
int fd; /* file descriptor for the directory */
Dirent d; /* the directory entry */
} DR

DI R *opendir (char *dirnane);
Dirent *readdir (DR *dfd);
void closedir (DI R *dfd);

The system call st at takes a filename and returns all of the information in the inode for
that file, or - 1 if thereisan error. That is,

char *nane;
struct stat stbuf;
int stat(char *, struct stat *);

st at (nane, &stbuf);
fills the structure st buf with the inode information for the file name. The structure
describing the valuereturned by st at isin <sys/ st at . h>, and typically lookslikethis:

struct stat /* inode information returned by stat */

{

dev _t st _dev; /* device of inode */

i no_t st _i no; /* inode numnber */

short st _node; /* node bits */

short st _nli nk; /* nunber of links to file */
short st _ui d; /* owners user id */

short st_gid; /* owners group id */

dev _t st _rdev; /* for special files */

of f _t st _size; /[* file size in characters */

time_t st _ati ne; /* time | ast accessed */

167

time_t st_ntime; [* time last nodified */
time_t st_cti ne; /[* time originally created */
b
Most of these values are explained by the comment fields. The types like dev_t and
i no_t aredefined in <sys/ types. h>, which must beincluded too.

The st _node entry contains a set of flags describing thefile. The flag definitions are also
included in <sys/ t ypes. h>; we need only the part that dealswith filetype:

#define S | FMI 0160000 /* type of file: */
#define S IFDIR 0040000 /* directory */

#define S_IFCHR 0020000 /* character special */
#define S_IFBLK 0060000 /* block special */
#define S_IFREG 0010000 /* regular */

[* .0 0%

Now we areready to writethe program f si ze. If the mode obtained from st at indicates
that a file is not a directory, then the size is at hand and can be printed directly. If the
name is a directory, however, then we have to process that directory onefile at atime; it
may in turn contain sub-directories, so the processisrecursive.

The main routine deals with command-line arguments; it hands each argument to the
function f si ze

#i ncl ude <stdi o. h>

#i ncl ude <string. h>

#include "syscalls.h"

#include <fcntl. h> /* flags for read and wite */
#include <sys/types.h> [* typedefs */

#i ncl ude <sys/stat.h> /* structure returned by stat */
#include "dirent.h"

void fsize(char *)

[* print file nane */
mai n(int argc, char **argv)

{
if (argc == 1) [* default: current directory */
fsize(".");
el se
while (--argc > 0)
fsize(*++argv);
return O;
}

Thefunction fsi ze prints the size of the file. If the file is a directory, however, fsi ze
first calls di rwal k to handle all the files in it. Note how the flag names s_| FMr and
S_| FDI R are used to decide if the file is a directory. Parenthesization matters, because
the precedence of & islower than that of ==.

int stat(char *, struct stat *);
voi d dirwal k(char *, void (*fcn)(char *));

[* fsize: print the name of file "name" */
void fsize(char *nane)

{

struct stat stbuf;

if (stat(nanme, &stbuf) == -1) {

168

fprintf(stderr, "fsize: can't access %\n", nane);
return;

}

if ((stbuf.st _node & S IFMIN == S I FDIR)
di rwal k(name, fsize);

printf("98ld %\n", stbuf.st_size, nane);

}
The function di rwal k is a general routine that applies a function to each file in a

directory. It opens the directory, loops through the files in it, calling the function on
each, then closes the directory and returns. Sincef si ze callsdi rwal k on each directory,
the two functions call each other recursively.

#def i ne MAX_PATH 1024

/* dirwal k: apply fcn to all files in dir */
voi d dirwal k(char *dir, void (*fcn)(char *))

{
char nanme[MAX_PATH] ;
Dirent *dp
DI R *df d;
if ((dfd = opendir(dir)) == NULL) {
fprintf(stderr, "dirwalk: can't open %\n", dir);
return;
}
while ((dp = readdir(dfd)) !'= NULL) {
if (strcmp(dp->nane, ".") == 0
|| strcnp(dp->nane, ".."))
conti nue; /* skip self and parent */
if (strlen(dir)+strlen(dp->nane)+2 > sizeof(nane))
fprintf(stderr, "dirwalk: name % % too |ong\n",
dir, dp->nane);
el se {
sprintf(name, "%/ %", dir, dp->nane);
(*fcn) (nane);
}
}
cl osedir (dfd);
}
Each call to readdir returns a pointer to information for the next file, or NULL when
there are no files left. Each directory always containsentriesfor itself, called ". ", and its
parent,".."; thesemust be skipped, or the program will loop forever.

Down to this last level, the code is independent of how directories are formatted. The
next step isto present minimal versions of opendi r, r eaddi r,and cl osedi r for aspecific
system. The following routines are for Version 7 and System V UNIX systems; they use
thedirectory information in the header <sys/ di r. h>, which lookslike this:

#i f ndef DI RSI Z
#define DIRSIZ 14

#endi f
struct direct { /* directory entry */
ino_t d_ino; /* inode nunber */

char d_name[DIRSIZ]; /* long nane does not have '\0' */
b
Some versions of the system permit much longer names and have a more complicated
directory structure.

169

Thetypeino_t isatypedef that describestheindex intotheinodelist. It happensto be
unsi gned short on the systemswe use regularly, but thisis not the sort of information
to embed in a program; it might be different on a different system, so the t ypedef is
better. A complete set of ““system'' typesisfound in <sys/ t ypes. h>.

opendi r opensthe directory, verifiesthat the fileis a directory (thistime by the system
call fstat, which is like stat except that it applies to a file descriptor), allocates a
directory structure, and recordsthe information:

int fstat(int fd, struct stat *);

/* opendir: open a directory for readdir calls */
DI R *opendir (char *dirnane)

{
int fd;
struct stat stbuf;
DI R *dp;
if ((fd = open(dirnane, O RDONLY, 0)) == -
|| fstat(fd, &stbuf) == -
|| (stbuf.st node & S IFMIN !'= S IFDIR
[| (dp = (DIR *) malloc(sizeof (DIR))) == NULL)
return NULL;
dp->fd = fd;
return dp;
}

cl osedi r closesthedirectory file and freesthe space:

/* closedir: «close directory opened by opendir */
void closedir (D R *dp)

if (dp) {
cl ose(dp->fd);
free(dp);
}
}
Finally, readdir uses read to read each directory entry. If a directory dot is not
currently in use (because a file has been removed), the inode number is zero, and this
position is skipped. Otherwise, the inode number and name are placed in a static
structure and a pointer to that is returned to the user. Each call overwrites the
information from the previousone.

#i ncl ude <sys/dir. h> /* local directory structure */

/* readdir: read directory entries in sequence */

Di rent *readdir (DI R *dp)

{
struct direct dirbuf; /* local directory structure */
static Dirent d; /* return: portable structure */

while (read(dp->fd, (char *) &dirbuf, sizeof(dirbuf))
== sizeof (dirbuf)) {
if (dirbuf.d_ino == 0) /* slot not in use */
conti nue;

d.ino = dirbuf.d_ino;
strncpy(d. nanme, dirbuf.d_nane, DI RSIZ);
d.nane[DIRSI Z] = '"\0'; [/* ensure ternination */
return &d;

170

return NULL;
}

Although the fsize program is rather specialized, it does illustrate a couple of
important ideas. First, many programs are not ~system programs'; they merely use
information that is maintained by the operating system. For such programs, it is crucial
that the representation of the information appear only in standard headers, and that
programs include those headers instead of embedding the declarations in themselves.
The second observation is that with care it is possible to create an interface to system-
dependent objects that is itself relatively system-independent. The functions of the
standard library are good examples.

Exer cise 8-5. Modify thef si ze program to print the other infor mation contained in the
inode entry.

8.7 Example - A Storage Allocator

In Chapter 5, we presented a vary limited stack-oriented storage allocator. The version
that we will now writeisunrestricted. Callsto mal | oc and f r ee may occur in any order;
mal | oc calls upon the operating system to obtain more memory as necessary. These
routines illustrate some of the considerations involved in writing machine-dependent
code in a relatively machine-independent way, and also show a real-life application of
structures, unionsand t ypedef .

Rather than allocating from a compiled-in fixed-size array, nal | oc will request space
from the operating system as needed. Since other activities in the program may also
request space without calling this allocator, the space that mal | oc manages may not be
contiguous. Thus its free storage is kept as a list of free blocks. Each block contains a
size, a pointer to the next block, and the space itself. The blocks are kept in order of
increasing storage address, and the last block (highest address) pointsto thefirst.

free list
SR in i [T
....... use use |use ... |usE

I:l free, owned by malloc
in use, owned by malloc
not owned by malloc

When arequest is made, the free list is scanned until a big-enough block is found. This
algorithm is called ““first fit,'"" by contrast with “best fit,"" which looks for the smallest
block that will satisfy the request. If the block is exactly the size requested it is unlinked
from the list and returned to the user. If the block is too big, it is split, and the proper
amount is returned to the user while the residue remains on the free list. If no big-
enough block is found, another large chunk is obtained by the operating system and
linked into thefreelist.

171

Freeing also causes a search of the free list, to find the proper place to insert the block
being freed. If the block being freed is adjacent to a free block on either side, it is
coalesced with it into a single bigger block, so storage does not become too fragmented.
Determining the adjacency is easy because the free list is maintained in order of
decreasing address.

One problem, which we alluded to in Chapter 5, isto ensure that the storage returned
by mal | oc isaligned properly for the objectsthat will be stored in it. Although machines
vary, for each machinethereisamost restrictive type: if the most restrictive type can be
stored at a particular address, all other types may be also. On some machines, the most
restrictivetypeisadoubl e; on others,i nt or | ong suffices.

A free block contains a pointer to the next block in the chain, a record of the size of the
block, and then the free space itself; the control information at the beginning is called
the “header." To simplify alignment, all blocks are multiples of the header size, and the
header is aligned properly. Thisis achieved by a union that contains the desired header
structure and an instance of the most restrictive alignment type, which we have
arbitrarily madeal ong:

typedef long Align; [* for alignnent to | ong boundary */
uni on header { /* block header */
struct {
uni on header *ptr; /* next block if on free list */
unsi gned si ze; /* size of this block */
}os;
Align x; [* force alignnent of blocks */

}s

t ypedef uni on header Header
The Al'i gn field is never used; it just forces each header to be aligned on a wor st-case
boundary.

In mal | oc, the requested size in characters is rounded up to the proper number of
header-sized units; the block that will be allocated contains one more unit, for the
header itself, and thisis the value recorded in the si ze field of the header. The pointer
returned by mal | oc points at the free space, not at the header itself. The user can do
anything with the space requested, but if anything is written outside of the allocated
spacethelist islikely to be scrambled.

/r points to next free block
/ s1ze

A block returned by mallec

address returned to nser

172

The size field is necessary because the blocks controlled by malloc need not be
contiguous- it isnot possible to compute sizes by pointer arithmetic.

The variable base is used to get started. If freep iS NULL, as it is at the first call of
mal | oc, then a degenerate free list is created; it contains one block of size zero, and
pointsto itself. In any case, the freelist is then searched. The search for a free block of
adequate size begins at the point (freep) where the last block was found; this strategy
helps keep the list homogeneous. If a too-big block is found, the tail end isreturned to
the user; in thisway the header of the original needs only to have its size adjusted. In all
cases, the pointer returned to the user points to the free space within the block, which
beginsone unit beyond the header.

stati c Header base; /* enpty list to get started */
static Header *freep = NULL; /* start of free list */

/* malloc: general-purpose storage allocator */
void *mal |l oc(unsi gned nbytes)

{
Header *p, *prevp;
Header *noreroce(unsigned);
unsi gned nunits;
nunits = (nbytes+si zeof (Header)-1)/si zeof (header) + 1
if ((prevp = freep) == NULL) { /* no free list yet */
base.s.ptr = freeptr = prevptr = &base;
base.s.size = 0;
}
for (p = prevp->s.ptr; ; prevp = p, p = p->s.ptr) {
if (p->s.size >= nunits) { /* big enough */
if (p->s.size == nunits) [* exactly */
prevp->s.ptr = p->s.ptr;
el se { /* allocate tail end */
p->s.size -= nunits;
p += p->s.size;
p->s.size = nunits;
}
freep = prevp;
return (void *)(p+l);
if (p ==freep) [/* wapped around free list */
if ((p = norecore(nunits)) == NULL)
return NULL; /* none left */
}
}

The function nor ecor e obtains storage from the operating system. The details of how it
does this vary from system to system. Since asking the system for memory is a
compar atively expensive operation. we don't want to do that on every call to mal | oc, SO
nor ecor e requests al least NALLOC units; thislarger block will be chopped up as needed.
After setting the size field, nor ecor e inserts the additional memory into the arena by
callingfree.

The UNIX system call sbrk(n) returnsapointer ton more bytesof storage. sbrk returns
- 1 if there was no space, even though NULL could have been a better design. The- 1 must
be cast to char * so it can be compared with the return value. Again, casts make the
function relatively immune to the details of pointer representation on different
machines. There is still one assumption, however, that pointers to different blocks
returned by sbrk can be meaningfully compared. This is not guaranteed by the

173

standard, which permits pointer comparisons only within an array. Thusthis version of
mal | oc is portable only among machines for which general pointer comparison is
meaningful.

#defi ne NALLOC 1024 /* mnimum#units to request */

/* morecore: ask systemfor nore nenory */
static Header *norecore(unsigned nu)

{
char *cp, *sbrk(int);
Header *up;
if (nu < NALLOC)
nu = NALLCC,
cp = sbrk(nu * sizeof (Header));
if (cp == (char *) -1) /* no space at all */
return NULL;
up = (Header *) cp;
up->s.size = nu;
free((void *)(up+l));
return freep;
}

free itself isthe last thing. It scans the freelist, starting at f r eep, looking for the place
to insert the free block. This is either between two existing blocks or at the end of the
list. In any case, if the block being freed is adjacent to either neighbor, the adjacent
blocks are combined. The only troubles are keeping the pointers pointing to the right
things and the sizes correct.

/* free: put block ap in free list */
void free(void *ap)

{
Header *bp, *p;
bp = (Header *)ap - 1; /* point to block header */
for (p = freep; !(bp > p & bp < p->s.ptr); p = p->s.ptr)
if (p >= p->s.ptr & (bp > p || bp < p->s.ptr))
break; [/* freed block at start or end of arena */
if (bp + bp->size == p->s.ptr) { /* join to upper nbr */
bp->s.size += p->s.ptr->s.size;
bp->s.ptr = p->s.ptr->s.ptr;
} else
bp->s.ptr = p->s.ptr;
if (p + p->size == bp) { /[* join to | ower nbr */
p->s.size += bp->s.size;
p->s.ptr = bp->s.ptr;
} else
p->s.ptr = bp;
freep = p;
}

Although storage allocation is intrinsically machine-dependent, the code above
illustrates how the machine dependencies can be controlled and confined to a very small
part of the program. The use of t ypedef and uni on handles alignment (given that sbrk
supplies an appropriate pointer). Casts arrange that pointer conversions are made
explicit, and even cope with a badly-designed system interface. Even though the details
here are related to storage allocation, the general approach is applicable to other
situations aswell.

174

Exercise 86. The standard library function cal | oc(n, si ze) returns a pointer to n
objects of size si ze, with the storage initialized to zero. Write cal | oc, by calling nal | oc
or by modifyingit.

Exercise 8-7. mal | oc accepts a size request without checking its plausibility; free
believes that the block it is asked to free contains a valid size field. Improve these
routines so they make more painswith error checking.

Exercise 8-8. Write a routine bfree(p, n) that will free any arbitrary block p of n
charactersinto the free list maintained by mal | oc and free. By using bf r ee, a user can
add a static or external array tothefreelist at any time.

175

Appendix A - Reference Manual

A.1 Introduction

This manual describes the C language specified by the draft submitted to ANSI on 31
October, 1988, for approval as ~American Standard for Information Systems -
programming Language C, X3.159-1989." The manual is an interpretation of the
proposed standard, not the standard itself, although care has been taken to make it a
reliable guide to the language.

For the most part, this document follows the broad outline of the standard, which in
turn follows that of the first edition of this book, although the organization differsin
detail. Except for renaming a few productions, and not formalizing the definitions of the
lexical tokens or the preprocessor, the grammar given here for the language proper is
equivalent to that of the standard.

Throughout this manual, commentary material is indented and written in smaller type, as thisis.
Most often these comments highlight ways in which ANSI Standard C differs from the language
defined by the first edition of this book, or from refinements subsequently introduced in various
compilers.

A.2 Lexical Conventions

A program consists of one or more translation units stored in files. It is trandlated in
several phases, which are described in Par.A.12. The first phases do low-levd lexical
transformations, carry out directives introduced by the lines beginning with the #
character, and perform macro definition and expansion. When the preprocessing of
Par.A.12 iscomplete, the program has been reduced to a sequence of tokens.

A.2.1 Tokens

There are six classes of tokens: identifiers, keywords, constants, string literals,
operators, and other separators. Blanks, horizontal and vertical tabs, newlines,
formfeeds and comments as described below (collectively, ““white space’) are ignored
except as they separate tokens. Some white space is required to separate otherwise
adjacent identifiers, keywor ds, and constants.

If the input stream has been separated into tokens up to a given character, the next
token isthelongest string of charactersthat could constitute a token.

A.2.2 Comments

The characters /* introduce a comment, which terminates with the characters */.
Commentsdo not nest, and they do not occur within astring or character literals.

A.2.3 ldentifiers

176

An identifier is a sequence of letters and digits. The first character must be a letter; the
underscore _ counts as a letter. Upper and lower case letters are different. Identifiers
may have any length, and for internal identifiers, at least the first 31 characters are
significant; some implementations may take more characters significant. Internal
identifiers include preprocessor macro names and all other names that do not have
external linkage (Par.A.11.2). ldentifiers with external linkage are more restricted:
implementations may make as few asthefirst six characters significant, and may ignore
case distinctions.

A.2.4 Keywords

The following identifiers are reserved for the use as keywords, and may not be used
otherwise:

auto doubl e i nt struct
br eak el se ong switch
case enum regi ster t ypedef
char extern return uni on
const fl oat short unsi gned
conti nue for si gned voi d

def aul t goto si zeof vol atile
do if static whi |l e

Some implementations also reservethewordsf ort r an and asm
The keywords const, si gned, and vol ati | e are new with the ANSI standard; enumand
voi d are new since the first edition, but in common use; ent ry, formerly reserved but never
used, isno longer reserved.

A.2.5 Constants

There are several kinds of constants. Each has a data type; Par.A.4.2 discussesthe basic
types:

constant:
integer-constant
character-constant
floating-constant
enumer ation-constant

A.2.5.1 Integer Constants

An integer constant consisting of a sequence of digitsistaken to beoctal if it beginswith
0 (digit zero), decimal otherwise. Octal constants do not contain the digits 8 or 9. A
sequence of digits preceded by 0x or 0X (digit zero) istaken to be a hexadecimal integer.
The hexadecimal digitsincludea or Athrough f or F with values10 through 15.

An integer constant may be suffixed by the letter u or U, to specify that it isunsigned. It
may also be suffixed by theletter | or L to specify that it islong.

The type of an integer constant depends on its form, value and suffix. (See Par.A.4 for a
discussion of types). If it isunsuffixed and decimal, it hasthefirst of these typesin which
itsvaluecan berepresented: i nt,1 ong int,unsigned | ong int.Ifitisunsuffixed, octal
or hexadecimal, it has the first possible of these types: i nt, unsi gned int,long int,
unsi gned | ong int.Ifitissuffixed by u or U, thenunsi gned i nt,unsi gned | ong int.

177

If it issuffixed by | or L,thenlong int,unsigned |ong int.Ifaninteger constant is
suffixed by UL, it isunsi gned | ong.

The elaboration of the types of integer constants goes consider ably beyond the first edition, which
merely caused largeinteger constantsto bel ong. The U suffixes are new.

A.2.5.2 Character Constants

A character constant is a sequence of one or mor e characters enclosed in single quotes as
in' x' . Thevalue of a character constant with only one character isthe numeric value of
the character in the machine's character set at execution time. The value of a multi-
character constant isimplementation-defined.

Character constants do not contain the ' character or newlines; in order to represent
them, and certain other characters, the following escape sequences may be used:

newline INL (LF) \n backsash ~ \ \\
horizontal tab |HT \t question mark? \?
vertical tab VT \v |singlequote |\
backspace |BS \b |doublequote " |\"
carriagereturn |CR \r octal number |000 \ 000
formfeed FF \f hexnumber hh \xhh
audiblealert |BEL |\a

The escape \ ooo consists of the backslash followed by 1, 2, or 3 octal digits, which are
taken to specify the value of the desired character. A common example of this
construction is \ 0 (not followed by a digit), which specifies the character NUL. The
escape \ xhh consists of the backslash, followed by x, followed by hexadecimal digits,
which are taken to specify the value of the desired character. There is no limit on the
number of digits, but the behavior is undefined if the resulting character value exceeds
that of the largest character. For either octal or hexadecimal escape characters, if the
implementation treats the char type as signed, the value is sign-extended as if cast to
char type. If the character following the \ is not one of those specified, the behavior is
undefined.

In some implementations, there is an extended set of characters that cannot be
represented in the char type. A constant in this extended set iswritten with a preceding
L, for example L' x' , and is called a wide character constant. Such a constant has type
wchar _t, an integral type defined in the standard header <st ddef . h>. Aswith ordinary
character constants, hexadecimal escapes may be used; the effect is undefined if the
specified value exceedsthat representable with wehar _t .

Some of these escape sequences are new, in particular the hexadecimal character representation.
Extended characters are also new. The character sets commonly used in the Americas and
western Europe can be encoded to fit in the char type; the main intent in addingwchar _t was
to accommodate Asian languages.

A.2.5.3 Floating Constants

178

A floating constant consists of an integer part, a decimal part, a fraction part, an e or E,
an optionally signed integer exponent and an optional type suffix, oneof f,F, |1 ,or L. The
integer and fraction parts both consist of a sequence of digits. Either the integer part, or
the fraction part (not both) may be missing; either the decimal point or the e and the
exponent (not both) may be missing. The type is determined by the suffix; F or f makes
itfloat,Lorl makesitlong doubl e, otherwiseit isdoubl e.

A2.5.4 Enumeration Constants

| dentifier sdeclar ed as enumer ator s (see Par .A.8.4) are constants of typei nt .

A.2.6 String Literals

A string literal, also called a string constant, is a sequence of characters surrounded by
double quotes asin "...". A string has type “array of characters' and storage class
static (see Par.A.3 below) and is initialized with the given characters. Whether
identical string literals are distinct is implementation-defined, and the behavior of a
program that attemptsto alter astring literal isundefined.

Adjacent string literals are concatenated into a single string. After any concatenation, a
null byte\ 0 is appended to the string so that programs that scan the string can find its
end. String literals do not contain newline or double-quote characters; in order to
represent them, the same escape sequences asfor character constants are available.

Aswith character constants, string literalsin an extended character set are written with
a preceding L, as in L"...". Widecharacter string literals have type “array of
wechar _t."" Concatenation of ordinary and wide string literalsis undefined.

The specification that string literals need not be distinct, and the prohibition against modifying
them, are new in the ANSl standard, as is the concatenation of adjacent string literals. Wide-
character string literalsare new.

A.3 Syntax Notation

In the syntax notation used in this manual, syntactic categories are indicated by italic
type, and literal words and charactersin typewiter style. Alternative categories are
usually listed on separate lines; in a few cases, a long set of narrow alternatives is
presented on one line, marked by the phrase “one of.'" An optional terminal or
nonterminal symbol carriesthe subscript ““opt,'" sothat, for example,

{ expressiongy }
means an optional expression, enclosed in braces. The syntax issummarized in Par.A.13.

Unlike the grammar given in the first edition of this book, the one given here makes precedence
and associativity of expression operatorsexplicit.

A.4 Meaning of Identifiers

Identifiers, or names, refer to a variety of things: functions; tags of structures, unions,
and enumerations;, members of structures or unions, enumeration constants; typedef

179

names; and objects. An object, sometimes called a variable, is a location in storage, and
its interpretation depends on two main attributes: its storage class and its type. The
storage class deter mines the lifetime of the storage associated with the identified object;
the type deter mines the meaning of the values found in the identified object. A name also
has a scope, which is the region of the program in which it is known, and a linkage,
which determines whether the same name in another scope refersto the same object or
function. Scope and linkage are discussed in Par.A.11.

A.4.1 Storage Class

There are two storage classes: automatic and static. Several keywords, together with the
context of an object's declaration, specify its storage class. Automatic objects are local to
a block (Par.9.3), and are discarded on exit from the block. Declarations within a block
create automatic objects if no storage class specification is mentioned, or if the auto
specifier isused. Objectsdeclared r egi st er areautomatic, and are (if possible) stored in
fast registers of the machine.

Static objects may be local to a block or external to all blocks, but in either case retain
their values across exit from and reentry to functions and blocks. Within a block,
including a block that provides the code for a function, static objects are declared with
the keyword static. The objects declared outside all blocks, at the same level as
function definitions, are always static. They may be made local to a particular
trandation unit by use of the static keyword; this gives them internal linkage They
become global to an entire program by omitting an explicit storage class, or by using the
keyword ext er n; this givesthem external linkage.

A.4.2 Basic Types

There are several fundamental types. The standard header <limits. h> described in
Appendix B defines the largest and smallest values of each type in the local
implementation. The numbers given in Appendix B show the smallest acceptable
magnitudes.

Objects declared as characters (char) are large enough to store any member of the
execution character set. If a genuine character from that set isstored in achar object, its
value is equivalent to the integer code for the character, and is non-negative. Other
quantities may be stored into char variables, but the available range of values, and
especially whether thevalueissigned, isimplementation-dependent.

Unsigned characters declared unsi gned char consume the same amount of space as
plain characters, but always appear non-negative; explicitly signed characters declared
si gned char likewisetakethe same space asplain characters.

unsigned char type does not appear in the first edition of this book, but is in common use.
si gned char isnew.

Besides the char types, up to three sizes of integer, declared short int,int,and| ong
i nt, areavailable. Plain i nt objects have the natural size suggested by the host machine
architecture; the other sizesare provided to meet special needs. Longer integers provide
at least as much storage as shorter ones, but the implementation may make plain
integers equivalent to either short integers, or long integers. Thei nt typesall represent
signed values unless specified otherwise.

180

Unsigned integers, declared using the keyword unsi gned, obey the laws of arithmetic
modulo 2" where n is the number of bitsin the representation, and thus arithmetic on
unsigned quantities can never overflow. The set of non-negative values that can be
stored in a signed object is a subset of the values that can be stored in the corresponding
unsigned object, and the representation for the overlapping valuesisthe same.

Any of single precision floating point (f | oat), double precision floating point (doubl),
and extra precision floating point (I ong doubl e) may be synonymous, but the ones later
inthelist areat least as precise asthose before.

| ong doubl e isnew. Thefirg edition madel ong f | oat equivalent todoubl e; thelocution
has been withdrawn.

Enumerations are unique types that have integral values, associated with each
enumeration is a set of named constants (Par.A.8.4). Enumerations behave like integers,
but it is common for a compiler to issue a warning when an object of a particular
enumer ation is assigned something other than one of its constants, or an expression of its

type.

Because objects of these types can be interpreted as numbers, they will be referred to as
arithmetic types. Types char, and i nt of all sizes, each with or without sign, and also
enumer ation types, will collectively be called integral types. The types f | oat, doubl e,
and | ong doubl e will be called floating types.

The voi d type specifies an empty set of values. It is used as the type returned by
functionsthat generate no value.

A.4.3 Derived types

Beside the basic types, there is a conceptually infinite class of derived types constructed
from the fundamental typesin the following ways:

arrays of objects of a given type;

functionsreturning objects of a given type;

pointersto objects of a given type;

structures containing a sequence of objects of varioustypes;

unions capable of containing any of one of several objects of varioustypes.

In general these methods of constructing objects can be applied recursively.

A.4.4 Type Qualifiers

An object's type may have additional qualifiers. Declaring an object const announces
that its value will not be changed; declaring it vol ati | e announces that it has special

properties relevant to optimization. Neither qualifier affects the range of values or
arithmetic properties of the object. Qualifiersarediscussed in Par.A.8.2.

A.5 Objects and Lvalues

An Object isa named region of storage; an Ivalue is an expression referring to an object.
An obvious example of an lvalue expression is an identifier with suitable type and

181

storage class. There are operatorsthat yield lvalues, if Eisan expression of pointer type,
then *E is an Ivalue expression referring to the object to which E points. The name
“lvalue'" comes from the assignment expression E1 = E2 in which the left operand E1
must be an Ivalue expression. The discussion of each operator specifies whether it
expects lvalue operands and whether it yieldsan Ivalue.

A.6 Conversions

Some operators may, depending on their operands, cause conversion of the value of an
operand from one type to another. This section explains the result to be expected from
such conversions. Par.6.5 summarizes the conversions demanded by most ordinary
operators; it will be supplemented asrequired by the discussion of each operator.

A.6.1 Integral Promotion

A character, a short integer, or an integer bit-field, all either signed or not, or an object
of enumeration type, may be used in an expression wherever an integer may be used. If
an i nt can represent all the values of the original type, then the value is converted to
i nt ; otherwise the value is converted to unsi gned int. Thisprocessis called integral
promotion.

A.6.2 Integral Conversions

Any integer is converted to a given unsigned type by finding the smallest non-negative
value that is congruent to that integer, modulo one more than the largest value that can
be represented in the unsigned type. In a two's complement representation, this is
equivalent to left-truncation if the bit pattern of the unsigned type is narrower, and to
zero-filling unsigned values and sign-extending signed values if the unsigned type is
wider.

When any integer is converted to a signed type, the value is unchanged if it can be
represented in the new type and isimplementation-defined otherwise.

A.6.3 Integer and Floating

When a value of floating type is converted to integral type, the fractional part is
discarded; if the resulting value cannot be represented in the integral type, the behavior
is undefined. In particular, the result of converting negative floating values to unsigned
integral typesisnot specified.

When a value of integral type is converted to floating, and the value is in the
representable range but is not exactly representable, then the result may be either the
next higher or next lower representable value. If the result is out of range, the behavior
isundefined.

A.6.4 Floating Types

When a less precise floating value is converted to an equally or more precise floating
type, the value is unchanged. When a more precise floating value is converted to a less
precise floating type, and the value is within representable range, the result may be

182

either the next higher or the next lower representable value. If the result is out of range,
the behavior isundefined.

A.6.5 Arithmetic Conversions

Many operators cause conversions and yield result typesin a similar way. The effect is
to bring operands into a common type, which is also the type of the result. This pattern
iscalled the usual arithmetic conversions.

First, if either operandisi ong doubl e, theother isconverted tol ong doubl e.
Otherwise, if either operand isdoubl e, the other isconverted to doubl e.
Otherwisg, if either operand isf | oat , the other isconverted tof | oat .

Otherwise, the integral promotions are performed on both operands; then, if
either operand isunsi gned | ong int, the other isconverted to unsi gned | ong
i nt.

Otherwise, if one operand is| ong i nt and the other isunsi gned i nt, the effect
depends on whether a 1 ong i nt can represent all values of an unsi gned int; if
so, the unsigned int operand is converted to I ong int; if not, both are
converted tounsi gned | ong int.

Otherwise, if oneoperand isl ong i nt, the other isconverted tol ong i nt.
Otherwisg, if either operand isunsi gned i nt, theother isconverted tounsi gned
i nt.

Otherwise, both operands havetypei nt .

There are two changes here. First, arithmetic on fl oat operands may be done in single
precision, rather than double; the first edition specified that all floating arithmetic was double
precision. Second, shorter unsigned types, when combined with a larger signed type, do not
propagate the unsigned property to the result type; in the first edition, the unsigned always
dominated. The new rules are dightly more complicated, but reduce somewhat the surprisesthat
may occur when an unsigned quantity meets signed. Unexpected results may still occur when an
unsigned expression iscompared to a signed expression of the same size.

A.6.6 Pointers and Integers

An expression of integral type may be added to or subtracted from a pointer; in such a
case the integral expression is converted as specified in the discussion of the addition

operator (Par.A.7.7).

Two pointers to objects of the same type, in the same array, may be subtracted; the
result isconverted to an integer as specified in the discussion of the subtraction operator

(Par.A.7.7).

An integral constant expression with value 0, or such an expression cast to typevoi d *,
may be converted, by a cast, by assignment, or by comparison, to a pointer of any type.
This produces a null pointer that is equal to another null pointer of the same type, but
unequal to any pointer to afunction or object.

Certain other conversions involving pointers are permitted, but have implementation-
defined aspects. They must be specified by an explicit type-conversion operator, or cast
(ParsA.7.5 and A.8.8).

A pointer may be converted to an integral type large enough to hold it; therequired size
isimplementation-dependent. The mapping function is also implementation-dependent.

183

A pointer to one type may be converted to a pointer to another type. The resulting
pointer may cause addressing exceptions if the subject pointer does not refer to an
object suitably aligned in storage. It is guaranteed that a pointer to an object may be
converted to a pointer to an object whose type requires less or equally strict storage
alignment and back again without change; the notion of ““alignment'' isimplementation-
dependent, but objects of the char types have least strict alignment requirements. As
described in Par.A.6.8, a pointer may also be converted to type voi d * and back again
without change.

A pointer may be converted to another pointer whose type is the same except for the
addition or removal of qualifiers (ParsA.4.4, A.8.2) of the object type to which the
pointer refers. If qualifiers are added, the new pointer is equivalent to the old except for
restrictions implied by the new qualifiers. If qualifiers are removed, operations on the
underlying object remain subject to the qualifiersin itsactual declaration.

Finally, a pointer to a function may be converted to a pointer to another function type.
Calling the function specified by the converted pointer is implementation-dependent;
however, if the converted pointer isreconverted toitsoriginal type, theresult isidentical
totheoriginal pointer.

A.6.7 Void

The (nonexistent) value of a voi d object may not be used in any way, and neither explicit
nor implicit conversion to any non-void type may be applied. Because a void expression
denotes a nonexistent value, such an expression may be used only where the valueis not
required, for example as an expression statement (Par.A.9.2) or asthe left operand of a
comma operator (Par.A.7.18).

An expression may be converted to type void by a cast. For example, a void cast
documentsthe discarding of the value of a function call used as an expression statement.

voi d did not appear in thefirst edition of thisbook, but has become common since.

A.6.8 Pointers to Void

Any pointer to an object may be converted to type voi d * without loss of information. If
the result is converted back to the original pointer type, the original pointer is
recovered. Unlike the pointer-to-pointer conversions discussed in Par.A.6.6, which
generally require an explicit cast, pointers may be assigned to and from pointers of type
voi d *, and may be compared with them.
Thisinterpretation of voi d * pointersis new; previoudy, char * pointers played the role of
generic pointer. The ANSI standard specifically blesses the meeting of voi d * pointers with

object pointers in assgnments and relationals, while requiring explicit casts for other pointer
mixtures.

A.7 Expressions

The precedence of expression operatorsisthe same asthe order of the major subsections
of this section, highest precedencefirst. Thus, for example, the expressionsreferred to as
the operands of + (Par.A.7.7) are those expressions defined in ParsA.7.1-A.7.6. Within
each subsection, the operators have the same precedence. Left- or right-associativity is

184

specified in each subsection for the operators discussed therein. The grammar given in
Par.13 incor por ates the precedence and associativity of the operators.

The precedence and associativity of operators is fully specified, but the order of
evaluation of expressions is, with certain exceptions, undefined, even if the
subexpressions involve side effects. That is, unless the definition of the operator
guarantees that its operands are evaluated in a particular order, the implementation is
free to evaluate operands in any order, or even to interleave their evaluation. However,
each operator combines the values produced by its operands in a way compatible with
the parsing of the expression in which it appears.

This rule revokes the previous freedom to reorder expressions with operators that are
mathematically commutative and associative, but can fail to be computationally associative. The
change affects only floating-point computations near the limits of their accuracy, and situations
wher e overflow ispossible.

The handling of overflow, divide check, and other exceptionsin expression evaluation is
not defined by the language. Most existing implementations of C ignore overflow in
evaluation of signed integral expressions and assignments, but this behavior is not
guaranteed. Treatment of division by 0, and all floating-point exceptions, varies among
implementations; sometimesit isadjustable by a non-standard library function.

A.7.1 Pointer Conversion

If the type of an expression or subexpression is "array of T," for sometype T, then the
value of the expression is a pointer to the first object in the array, and the type of the
expression is altered to “pointer to T." This conversion does not take place if the
expression isin the operand of the unary & operator, or of ++, - -, si zeof , or astheleft
operand of an assgnment operator or the . operator. Similarly, an expression of type
“function returning T, except when used as the operand of the & operator, is converted
to “pointer to function returning T."

A.7.2 Primary Expressions
Primary expressions areidentifiers, constants, strings, or expressionsin parentheses.

primary-expression
identifier
constant
string
(expression)

Anidentifier isaprimary expression, provided it has been suitably declared as discussed
below. Its typeis specified by its declaration. An identifier isan lvalueif it refersto an
object (Par.A.5) and if itstypeisarithmetic, structure, union, or pointer.

A constant is a primary expression. Its type depends on its form as discussed in
Par.A.2.5.

A string literal isa primary expression. Itstypeisoriginally “array of char' (for wide-
char strings, “array of wchar_t'"), but following the rule given in Par.A.7.1, thisis
usually modified to “pointer to char'' (wchar _t) and the result is a pointer to the first

185

character in the string. The conversion also does not occur in certain initializers; see
Par.A.8.7.

A parenthesized expression is a primary expression whose type and value are identical
to those of the unadorned expression. The precedence of parentheses does not affect
whether the expression isan lvalue.

A.7.3 Postfix Expressions

The operatorsin postfix expressions group left toright.

postfix-expression:
primary-expression
postfix-expression[expression]
postfix-expression(argument-expression-listop)
postfix-expression.identifier
postfix-expression- >identifier
postfix-expression++
postfix-expression- -

argument-expression-list:
assignment-expression
assignment-expression-list, assignment-expression

A.7.3.1 Array References

A postfix expression followed by an expression in squar e bracketsis a postfix expression
denoting a subscripted array reference. One of the two expressions must have type
“pointer to T'', where T is some type, and the other must have integral type; the type of
the subscript expression is T. The expression E1[E2] is identical (by definition) to
*((E1)+(E2)) . SeePar.A.8.6.2 for further discussion.

A.7.3.2 Function Calls

A function call is a postfix expression, called the function designator, followed by
parentheses containing a possibly empty, comma-separated list of assignment
expressions (Par.A7.17), which constitute the arguments to the function. If the postfix
expression consists of an identifier for which no declaration exists in the current scope,
theidentifier isimplicitly declared asif the declaration

extern int identifier();

had been given in the innermost block containing the function call. The postfix
expression (after possible explicit declaration and pointer generation, Par .A7.1) must be
of type “pointer to function returning T," for sometype T, and the value of the function
call hastypeT.

In the first edition, the type was restricted to ““function,”" and an explicit * operator was required
to call through pointers to functions. The ANSl standard blesses the practice of some existing
compilers by permitting the same syntax for calls to functions and to functions specified by
pointers. The older syntax is till usable.

186

The term argument is used for an expression passed by a function call; the term
parameter is used for an input object (or itsidentifier) received by a function definition,
or described in a function declaration. The terms “actual argument (parameter)'" and
“formal argument (parameter)'" respectively are sometimes used for the same
distinction.

In preparing for the call to a function, a copy is made of each argument; all argument-
passing is strictly by value. A function may change the values of its parameter objects,
which are copies of the argument expressions, but these changes cannot affect the values
of the arguments. However, it is possible to pass a pointer on the under standing that the
function may changethe value of the object to which the pointer points.

There are two styles in which functions may be declared. In the new style, the types of
parameters ae explicit and are part of the type of the function; such a declaration os
also called a function prototype. In the old style, parameter types are not specified.
Function declaration isissued in Pars.A.8.6.3 and A.10.1.

If the function declaration in scope for a call is old-style, then default argument
promotion is applied to each argument as follows: integral promotion (Par.A.6.1) is
performed on each argument of integral type, and each f1 oat argument isconverted to
doubl e. The effect of the call isundefined if the number of arguments disagrees with the
number of parameters in the definition of the function, or if the type of an argument
after promotion disagrees with that of the corresponding parameter. Type agreement
depends on whether the function's definition is new-style or old-style. If it is old-style,
then the comparison is between the promoted type of the arguments of the call, and the
promoted type of the parameter, if the definition is new-style, the promoted type of the
argument must bethat of the parameter itself, without promotion.

If the function declaration in scope for a call is new-style, then the arguments are
converted, as if by assignment, to the types of the corresponding parameters of the
function's prototype. The number of arguments must be the same as the number of
explicitly described parameters, unless the declaration's parameter list ends with the
ellipsisnotation (, ...).In that case, the number of arguments must equal or exceed
the number of parameters; trailing arguments beyond the explicitly typed parameters
suffer default argument promotion as described in the preceding paragraph. If the
definition of the function is old-style, then the type of each parameter in the definition,
after the definition parameter'stype has under gone argument promaotion.

Theserules are especially complicated because they must cater to a mixture of old- and new-style
functions. Mixturesareto beavoided if possible.

The order of evaluation of arguments is unspecified; take note that various compilers
differ. However, the arguments and the function designator are completely evaluated,
including all side effects, before the function is entered. Recursive calls to any function
are permitted.

A.7.3.3 Structure References

A postfix expression followed by a dot followed by an identifier is a postfix expression.
The first operand expression must be a structure or a union, and the identifier must
name a member of the structure or union. The value is the named member of the
structure or union, and itstype isthe type of the member. The expression is an lvalue if

187

the first expression is an lvalue, and if the type of the second expression is not an array
type.

A postfix expression followed by an arrow (built from - and >) followed by an identifier
is a postfix expression. The first operand expression must be a pointer to a structure or
union, and the identifier must name a member of the structure or union. The result
refers to the named member of the structure or union to which the pointer expression
points, and the typeisthe type of the member; theresult isan lvalueif thetypeisnot an
array type.

Thus the expression E1->MOS is the same as (*E1). MOS. Structures and unions are
discussed in Par.A.8.3.

In the first edition of this book, it was already the rule that a member name in such an expression
had to belong to the structure or union mentioned in the postfix expression; however, a note
admitted that thisrule wasnot firmly enfor ced. Recent compilers, and ANSI, do enforceit.

A.7.3.4 Postfix I ncrementation

A postfix expression followed by a ++ or - - operator isa postfix expression. The value of
the expression is the value of the operand. After the value is noted, the operand is
incremented ++ or decremented -- by 1. The operand must be an Ivalue, see the
discussion of additive operators (Par.A.7.7) and assignment (Par.A.7.17) for further
constraintson the operand and details of the operation. Theresult isnot an lvalue.

A.7.4 Unary Operators
Expressionswith unary operators group right-to-left.

unary-expression:
postfix expression
++unary expression
- - unary expression
unary-operator cast-expression
si zeof unary-expression
si zeof (type-name)

unary operator: one of
&* + - ~ |

A.7.4.1 Prefix Incrementation Operators

A unary expression followed by a ++ or - - operator isa unary expression. The operand
isincremented ++ or decremented - - by 1. The value of the expression isthe value after
the incrementation (decrementation). The operand must be an lvalue; see the discussion
of additive operators (Par.A.7.7) and assignment (Par.A.7.17) for further constraintson
the operands and details of the operation. Theresult isnot an lvalue.

A.7.4.2 Address Operator

The unary operator & takes the address of its operand. The operand must be an lvalue
referring neither to a bit-field nor to an object declared as regi ster, or must be of

188

function type. Theresult is a pointer to the object or function referred to by the lvalue.
If thetype of the operand isT, thetype of theresult is “pointer to T."

A.7.4.3 Indirection Operator

Theunary * operator denotesindirection, and returnsthe object or function to which its
operand points. It is an lvalue if the operand is a pointer to an object of arithmetic,
structure, union, or pointer type. If the type of the expression is “pointer to T, the type
of theresult isT.

A.7.4.4 Unary Plus Operator

The operand of the unary + operator must have arithmetic type, and the result is the
value of the operand. An integral operand undergoes integral promotion. The type of

theresult isthetype of the promoted operand.
Theunary + isnew with the ANSI standard. It wasadded for symmetry with theunary - .

A.7.4.5 Unary Minus Operator

The operand of the unary - operator must have arithmetic type, and the result is the
negative of its operand. An integral operand undergoes integral promotion. The
negative of an unsigned quantity is computed by subtracting the promoted value from
the largest value of the promoted type and adding one; but negative zero is zero. The
type of theresult isthetype of the promoted operand.

A.7.4.6 One's Complement Operator

The operand of the ~ operator must have integral type, and the result is the on€'s
complement of its operand. The integral promotions are performed. If the operand is
unsigned, the result is computed by subtracting the value from the largest value of the
promoted type. If the operand is signed, the result is computed by converting the
promoted operand to the corresponding unsigned type, applying ~, and converting back
tothe signed type. Thetype of theresult isthe type of the promoted operand.

A.7.4.7 Logical Negation Operator

The operand of the ! operator must have arithmetic type or be a pointer, and the result
is 1 if the value of its operand compares equal to 0, and O otherwise. The type of the
result isint .

A.7.4.8 Sizeof Operator

Thesi zeof operator yieldsthe number of bytesrequired to store an object of the type of
its operand. The operand is either an expression, which is not evaluated, or a
parenthesized type name. When si zeof is applied to a char, the result is 1; when
applied to an array, the result isthe total number of bytesin the array. When applied to
a structure or union, the result is the number of bytes in the object, including any
padding required to make the object tile an array: the size of an array of n elementsisn
times the size of one element. The operator may not be applied to an operand of function
type, or of incomplete type, or to a bit-field. The result isan unsigned integral constant;
the particular type is implementation-defined. The standard header <stddef. h> (See
appendix B) definesthistype assi ze_t .

189
A.7.5 Casts

A unary expression preceded by the parenthesized name of a type causes conversion of
the value of the expression to the named type.

cast-expression:
unary expression
(type-name) cast-expression

This construction is called a cast. The names are described in Par.A.8.8. The effects of
conversionsare described in Par.A.6. An expression with a cast isnot an Ivalue.

A.7.6 Multiplicative Operators
The multiplicative operators*, / , and %group left-to-right.

multiplicative-expression:
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression %cast-expression

The operands of * and / must have arithmetic type; the operands of % must have
integral type. The usual arithmetic conversions are performed on the operands, and
predict thetype of theresult.

Thebinary * operator denotes multiplication.

The binary / operator yields the quotient, and the % operator the remainder, of the
division of the first operand by the second; if the second operand is O, the result is
undefined. Otherwise, it is always true that (a/b)*b + a% is equal to a. If both
operands are non-negative, then the remainder is non-negative and smaller than the
divisor, if not, it is guaranteed only that the absolute value of the remainder is smaller
than the absolute value of the divisor.

A.7.7 Additive Operators

The additive operators + and - group left-to-right. If the operands have arithmetic type,
the usual arithmetic conversions are performed. There are some additional type
possibilitiesfor each operator.

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

The result of the + operator is the sum of the operands. A pointer to an object in an
array and a value of any integral type may be added. The latter is converted to an
address offset by multiplying it by the size of the object to which the pointer points. The
sum is a pointer of the same type as the original pointer, and pointsto another object in
the same array, appropriately offset from the original object. Thusif Pisa pointer to an
object in an array, the expression P+1 is a pointer to the next object in the array. If the

190

sum pointer points outside the bounds of the array, except at the first location beyond
the high end, theresult isundefined.

The provision for pointers just beyond the end of an array is new. It legitimizes a common idiom
for looping over the elementsof an array.

The result of the - operator is the difference of the operands. A value of any integral
type may be subtracted from a pointer, and then the same conversions and conditions as
for addition apply.

If two pointers to objects of the same type are subtracted, theresult isa signed integral
value representing the displacement between the pointed-to objects; pointers to
successive objects differ by 1. The type of the result is defined as ptrdiff_t in the
standard header <st ddef . h>. The value is undefined unless the pointers point to objects
within the same array; however, if P pointsto thelast member of an array, then (P+1) - P
hasvalue 1.

A.7.8 Shift Operators

The shift operators << and >> group left-to-right. For both operators, each operand
must be integral, and is subject to integral the promotions. The type of the result is that
of the promoted left operand. Theresult isundefined if theright operand is negative, or
greater than or equal to the number of bitsin theleft expression'stype.

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

Thevalue of E1<<E2 iSE1 (interpreted asa bit pattern) left-shifted E2 bits; in the absence
of overflow, thisis equivalent to multiplication by 22, The value of E1>>E2 is E1 right-
shifted E2 bit positions. Theright shift isequivalent to division by 252 if E1 isunsigned or
it hasa non-negative value; otherwisetheresult isimplementation-defined.

A.7.9 Relational Operators

The relational operators group left-to-right, but thisfact isnot useful; a<b<c is parsed as
(a<b) <c, and evaluatesto either O or 1.

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

The operators < (less), > (greater), <= (lessor equal) and >= (greater or equal) all yield O
if the specified relation isfalseand 1 if it istrue. The type of theresult isi nt . The usual
arithmetic conversions are performed on arithmetic operands. Pointers to objects of the
same type (ignoring any qualifiers) may be compared; the result depends on therelative
locations in the address space of the pointed-to objects. Pointer comparison is defined
only for parts of the same object; if two pointers point to the same ssimple object, they

191

compare equal; if the pointers are to members of the same structure, pointersto objects
declared later in the structure compare higher; if the pointers refer to members of an
array, the comparison is equivalent to comparison of the the corresponding subscripts.
If P pointsto thelast member of an array, then P+1 compares higher than P, even though
P+1 pointsoutsidethe array. Otherwise, pointer comparison isundefined.

These rules dightly liberalize the restrictions stated in the first edition, by permitting comparison
of pointers to different members of a structure or union. They also legalize comparison with a
pointer just off theend of an array.

A.7.10 Equality Operators

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression ! = relational-expression

The == (equal to) and the ! = (not equal to) operators are analogous to the relational
operators except for their lower precedence. (Thus a<b == c<d is 1 whenever a<b and
c<d havethe sametruth-value.)

The equality operators follow the same rules as the relational operators, but permit
additional possibilities. a pointer may be compared to a constant integral expression
with value 0, or to a pointer tovoi d. See Par.A.6.6.

A.7.11 Bitwise AND Operator

AND-expression:
equality-expression
AND-expression & equality-expression

The usual arithmetic conversions are performed; the result is the bitwise AND function
of the operands. The operator appliesonly tointegral operands.

A.7.12 Bitwise Exclusive OR Operator

exclusive-OR-expression:
AND-expression
exclusive-OR-expression ~ AND-expression

The usual arithmetic conversions are performed; the result is the bitwise exclusive OR
function of the operands. The operator appliesonly to integral operands.

A.7.13 Bitwise Inclusive OR Operator

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

The usual arithmetic conversions are performed; the result is the bitwise inclusive OR
function of the operands. The operator appliesonly to integral operands.

192
A.7.14 Logical AND Operator

logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

The && operator groups left-to-right. It returns 1 if both its operands compar e unequal
to zero, O otherwise. Unlike &, && guar antees left-to-right evaluation: thefirst operand is
evaluated, including all side effects; if it is equal to O, the value of the expression is 0.
Otherwise, theright operand is evaluated, and if it is equal to 0, the expression'svalueis
0, otherwise 1.

The operands need not have the same type, but each must have arithmetic type or be a
pointer. Theresult isi nt .

A.7.15 Logical OR Operator

logical-OR-expression:
logical-AND-expression
logical-OR-expression | | logical-AND-expression

The || operator groups left-to-right. It returns 1 if either of its operands compare
unequal to zero, and O otherwise. Unlike |, | | guarantees left-to-right evaluation: the
first operand is evaluated, including all side effects; if it isunequal to O, the value of the
expression is 1. Otherwise, the right operand is evaluated, and if it is unequal to O, the
expression'svalueis 1, otherwise 0.

The operands need not have the same type, but each must have arithmetic type or be a
pointer. Theresult isi nt .

A.7.16 Conditional Operator

conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

The first expression is evaluated, including all side effects; if it compares unequal to 0,
the result is the value of the second expression, otherwise that of the third expression.
Only one of the second and third operands is evaluated. If the second and third
operands are arithmetic, the usual arithmetic conversions are performed to bring them
to a common type, and that typeis the type of the result. If both are voi d, or structures
or unions of the same type, or pointers to objects of the same type, the result has the
common type. If oneis a pointer and the other the constant O, the O is converted to the
pointer type, and the result has that type. If one is a pointer to voi d and the other is
another pointer, the other pointer is converted to a pointer to voi d, and that isthe type
of theresult.

In the type comparison for pointers, any type qualifiers (Par.A.8.2) in the type to which
the pointer points are insignificant, but the result type inherits qualifiers from both
arms of the conditional.

193
A.7.17 Assignment Expressions

Thereare several assignment operators; all group right-to-left.

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= *= [= U += -= <<= >>= :/\:lz

All require an lvalue as left operand, and the lvalue must be modifiable: it must not be
an array, and must not have an incomplete type, or be a function. Also, itstype must not
be qualified with const ; if it isa structure or union, it must not have any member or,
recursively, submember qualified with const . The type of an assignment expression is
that of its left operand, and the value is the value stored in the left operand after the
assignment hastaken place.

In the simple assignment with =, the value of the expression replaces that of the object
referred to by the lvalue. One of the following must be true: both operands have
arithmetic type, in which case the right operand is converted to the type of the left by the
assignment; or both operands are structures or unions of the same type; or one operand
is a pointer and the other is a pointer to voi d, or the left operand is a pointer and the
right operand is a constant expression with value O; or both operands are pointers to
functions or objects whose types ar e the same except for the possible absence of const or
vol ati | e intheright operand.

An expression of theform E1 op= E2 isequivalenttoEl = E1 op (E2) exceptthat Elis
evaluated only once.

A.7.18 Comma Operator

expression:
assignment-expression
expression, assignment-expression

A pair of expressions separated by a comma is evaluated left-to-right, and the value of
the left expression is discarded. The type and value of the result are the type and value
of the right operand. All side effects from the evaluation of the left-operand are
completed before beginning the evaluation of the right operand. In contexts where
comma is given a special meaning, for example in lists of function arguments
(Par.A.7.3.2) and lists of initializers (Par.A.8.7), the required syntactic unit is an
assignment expression, so the comma oper ator appearsonly in a parenthetical grouping,
for example,

f(a, (t=3, t+2), c)
hasthree arguments, the second of which hasthevalueb.

A.7.19 Constant Expressions

Syntactically, a constant expression isan expression restricted to a subset of operators:

194

constant-expression:
conditional-expression

Expressions that evaluate to a constant are required in several contexts: after case, as
array bounds and bit-field lengths, as the value of an enumeration constant, in
initializers, and in certain preprocessor expressions.

Constant expressions may not contain assignments, increment or decrement operators,
function calls, or comma operators, except in an operand of si zeof . If the constant
expression isrequired to be integral, its operands must consist of integer, enumeration,
character, and floating constants; casts must specify an integral type, and any floating
constants must be cast to integer. This necessarily rulesout arrays, indirection, address-
of, and structure member operations. (However, any operand is per mitted for si zeof .)

More latitude is permitted for the constant expressions of initializers; the operands may
be any type of constant, and the unary & operator may be applied to external or static
objects, and to external and static arrays subscripted with a constant expression. The
unary & operator can also be applied implicitly by appearance of unsubscripted arrays
and functions. Initializers must evaluate either to a constant or to the address of a
previously declared external or static object plusor minusa constant.

Less latitude is allowed for the integral constant expressions after #if; sizeof
expressions, enumer ation constants, and casts are not per mitted. See Par.A.12.5.

A .8 Declarations

Declarations specify the interpretation given to each identifier; they do not necessarily
reserve storage associated with the identifier. Declarations that reserve storage are
called definitions. Declar ations have theform

declaration:
declaration-specifiers init-declarator-listop;

The declarators in the init-declarator list contain the identifiers being declared; the
declar ation-specifier s consist of a sequence of type and stor age class specifiers.

declaration-specifiers:
storage-class-specifier declaration-specifiersopt
type-specifier declaration-specifierSop
type-qualifier declaration-specifier Sopt

init-declarator-list:
init-declarator
init-declarator-list, init-declarator

init-declarator:
declarator
declarator = initializer

Declaratorswill be discussed later (Par.A.8.5); they contain the names being declared. A
declaration must have at least one declarator, or its type specifier must declare a

195

structure tag, a union tag, or the members of an enumeration; empty declarations are
not permitted.

A.8.1 Storage Class Specifiers
The storage class specifiersare:

storage-class specifier:
aut o

register

static

extern

t ypedef

The meaning of the storage classes wer e discussed in Par.A.4.4.

Theaut o and r egi st er specifiers give the declared objects automatic storage class, and
may be used only within functions. Such declarations also serve as definitions and cause
storage to bereserved. A regi st er declaration is equivalent to an aut o declaration, but
hints that the declared objects will be accessed frequently. Only a few objects are
actually placed into registers, and only certain types are eligible; the restrictions are
implementation-dependent. However, if an object is declared regi ster, the unary &
operator may not be applied toit, explicitly or implicitly.

Therulethat it isillegal to calculate the address of an object declared r egi st er, but actually
taken tobeaut o, isnew

The st ati c specifier gives the declared objects static storage class, and may be used
either inside or outside functions. Inside a function, this specifier causes storage to be
allocated, and serves as a definition; for its effect outside a function, see Par.A.11.2.

A declaration with extern, used inside a function, specifies that the storage for the
declared objectsisdefined elsewhere; for itseffects outside a function, see Par.A.11.2.

Thetypedef specifier doesnot reserve storage and is called a stor age class specifier only
for syntactic convenience; it isdiscussed in Par.A.8.9.

At most one storage class specifier may be given in a declaration. If noneis given, these
rules are used: objects declared inside a function are taken to be auto; functions
declared within a function are taken to be extern; objects and functions declared
outside a function aretaken to best at i c, with external linkage. See Pars. A.10-A.11.

A.8.2 Type Specifiers
Thetype-specifiersare

type specifier:
voi d

char

short

i nt

 ong

196

fl oat

doubl e

si gned

unsi gned
struct-or-union-specifier
enum-specifier
typedef-name

At most one of thewords| ong or short may be specified together with i nt ; the meaning
is the same if i nt is not mentioned. The word | ong may be specified together with
doubl e. At most one of si gned or unsi gned may be specified together with i nt or any of
itsshort or | ong varieties, or with char . Either may appear alone in which casei nt is
understood. The si gned specifier is useful for forcing char objectsto carry asign; it is
per missible but redundant with other integral types.

Otherwise, at most one type-specifier may be given in a declaration. If the type-specifier
ismissing from a declaration, it istaken to bei nt .

Types may also be qualified, to indicate special propertiesof the objects being declared.

type-qualifier:
const
vol atile

Type qualifiers may appear with any type specifier. A const object may be initialized,
but not thereafter assigned to. There are no implementation-dependent semantics for
vol ati | e objects.

Theconst and vol ati | e propertiesare new with the ANSI standard. The purpose of const is
to announce objects that may be placed in read-only memory, and perhaps to increase
opportunities for optimization. The purpose of vol ati |l e is to force an implementation to
suppress optimization that could otherwise occur. For example, for a machine with memory-
mapped input/output, a pointer to a device register might be declared as a pointer tovol ati | e,
in order to prevent the compiler from removing apparently redundant references through the
pointer. Except that it should diagnose explicit attemptsto changeconst objects, a compiler may
ignorethese qualifiers.

A .8.3 Structure and Union Declarations

A structureis an object consisting of a sequence of named members of various types. A
union is an object that contains, at different times, any o several members of various
types. Structure and union specifier s have the same form.

struct-or-union-specifier:
struct-or-union identifieroy{ struct-declaration-list}
struct-or-union identifier

struct-or-union:
struct
uni on

A struct-declaration-list is a sequence of declarations for the members of the structure
or union:

197

struct-declaration-list:
struct declaration
struct-declaration-list struct declaration

struct-declaration: specifier-qualifier-list struct-declarator-list;

specifier-qualifier-list:
type-specifier specifier-qualifier-listop
type-qualifier specifier-qualifier-listop

struct-declarator-list:
struct-declar ator
struct-declarator-list, struct-declarator

Usually, a struct-declarator isjust a declarator for a member of a structure or union. A
structure member may also consist of a specified number of bits. Such a member isalso
called a bit-field; itslength is set off from the declarator for the field name by a colon.

struct-declarator:
declarator declaratorqy : constant-expression

A type specifier of theform
struct-or-union identifier { struct-declaration-list}

declares the identifier to be the tag of the structure or union specified by the list. A
subsequent declaration in the same or an inner scope may refer to the same type by
using thetag in a specifier without thelist:

struct-or-union identifier

If a specifier with a tag but without a list appears when the tag is not declared, an
incomplete type is specified. Objects with an incomplete structure or union type may be
mentioned in contexts where their size is not needed, for example in declarations (not
definitions), for specifying a pointer, or for creating atypedef, but not otherwise. The
type becomes complete on occurrence of a subsequent specifier with that tag, and
containing a declaration list. Even in specifiers with a list, the structure or union type
being declared is incomplete within the list, and becomes complete only at the }
terminating the specifier.

A structure may not contain a member of incomplete type. Therefore, it isimpossible to
declare a structure or union containing an instance of itself. However, besides giving a
name to the structure or union type, tags allow definition of self-referential structures; a
structure or union may contain a pointer to an instance of itself, because pointers to
incomplete types may be declared.

A very special rule appliesto declarations of theform
struct-or-union identifier;

that declare a structure or union, but have no declaration list and no declarators. Even
if the identifier is a structure or union tag already declared in an outer scope

198

(Par.A.11.1), this declaration makes the identifier the tag of a new, incompletely-typed
structureor union in the current scope.

This recondite is new with ANSI. It is intended to deal with mutually-recursive structures
declared in an inner scope, but whose tags might already be declared in the outer scope.

A structure or union specifier with a list but no tag creates a unique type; it can be
referred to directly only in the declaration of which it isa part.

The names of members and tags do not conflict with each other or with ordinary
variables. A member name may not appear twice in the same structure or union, but the
same member name may be used in different structuresor unions.

In the first edition of this book, the names of structure and union members were not associated
with their parent. However, this association became common in compilers well before the ANSI
standard.

A non-field member of a structure or union may have any object type. A field member
(which need not have a declarator and thus may be unnamed) has type i nt, unsi gned
int, or signed int, and is interpreted as an object of integral type of the specified
length in bits; whether an i nt field is treated as signed is implementation-dependent.
Adjacent field members of structures are packed into implementation-dependent
storage units in an implementation-dependent direction. When a field following another
field will not fit into a partially-filled storage unit, it may be split between units, or the
unit may be padded. An unnamed field with width O for ces this padding, so that the next
field will begin at the edge of the next allocation unit.

The ANSI standard makes fields even more implementation-dependent than did the first edition.
It is advisable to read the language rules for storing bit-fields as ~“implementation-dependent
without qualification. Structures with bit-fields may be used as a portable way of attempting to
reduce the storage required for a structure (with the probable cost of increasing the instruction
space, and time, needed to access the fields), or asa non-portable way to describe a storage layout
known at the bit-level. In the second caseg, it is necessary to understand the rules of the local
implementation.

The membersof a structure have addressesincreasing in the order of their declarations.
A non-field member of a structure is aligned at an addressing boundary depending on
itstype; therefore, there may be unnamed holesin a structure. If a pointer to a structure
iscast to thetype of a pointer toitsfirst member, theresult refersto thefirst member.

A union may be thought of as a structure all of whose members begin at offset O and
whose size is sufficient to contain any of its members. At most one of the members can
be stored in aunion at any time. If a pointr to a union is cast to the type of a pointer to a
member, theresult refersto that member.

A smple example of a structure declaration is

struct tnode {
char tword[20];
i nt count;
struct tnode *left;
struct tnode *right;

199

which contains an array of 20 characters, an integer, and two pointers to similar
structures. Oncethisdeclaration has bene given, the declaration

struct tnode s, *sp;
declares s to be a structure of the given sort, and sp to be a pointer to a structure of the
given sort. With these declar ations, the expression

sp->count
referstothecount field of the structureto which sp points;

s.left
refersto theleft subtree pointer of the structures, and

s. ri ght->tword[0]
referstothefirst character of thet wor d member of theright subtreeof s.

In general, a member of a union may not be inspected unless the value of the union has
been assigned using the same member. However, one special guarantee ssimplifiesthe use
of unions: if a union contains several structuresthat share a common initial sequence,
and the union currently contains one of these structures, it is permitted to refer to the
common initial part of any of the contained structures. For example, the following is a
legal fragment:

uni on {
struct {
int type;
o
struct {
int type;
i nt intnode;
}oni;
struct {
int type;
fl oat fl oatnode;
} nf;
bous

u.nf.type = FLOAT;
u.nf.fl oat node = 3. 14;

if.(u.n.type == FLOAT)
sin(u. nf.fl oat node)

A.8.4 Enumerations

Enumerations are unique types with values ranging over a set of named constants called
enumer ators. The form of an enumeration specifier borrows from that of structuresand
unions.

enum-specifier:
enumidentifiergy { enumerator-list }
enumidentifier

enumerator-list:
enumerator
enumerator-list, enumerator

200

enumerator:
identifier
identifier = constant-expression

The identifiers in an enumerator list are declared as constants of type i nt, and may
appear wherever constants are required. If no enumerations with = appear, then the
values of the corresponding constants begin at 0 and increase by 1 as the declaration is
read from left to right. An enumerator with = gives the associated identifier the value
specified; subsequent identifiers continue the progression from the assigned value.

Enumerator names in the same scope must all be distinct from each other and from
ordinary variable names, but the values need not be distinct.

Therole of the identifier in the enum-specifier isanalogousto that of the structuretagin
a struct-specifier; it names a particular enumeration. The rulesfor enum-specifierswith
and without tags and lists are the same as those for structure or union specifiers, except
that incomplete enumeration types do not exist; the tag of an enum-specifier without an
enumer ator list must refer to an in-scope specifier with alist.

Enumerations are new since the first edition of this book, but have been part of the language for
someyears.

A.8.5 Declarators

Declar ator s have the syntax:

declarator:
pointer o direct-declarator

direct-declarator:
identifier
(declarator)
direct-declarator [constant-expressionoy]
direct-declarator (parameter-type-list)
direct-declarator (identifier-listop)

pointer:
* type-qualifier-listop
* type-qualifier-listop: pointer

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

The structure of declarators resembles that of indirection, function, and array
expressions; the groupingisthe same.

A.8.6 Meaning of Declarators
A list of declarators appears after a sequence of type and storage class specifiers. Each

declarator declares a unique main identifier, the one that appears asthefirst alternative
of the production for direct-declarator. The storage class specifiers apply directly to this

201

identifier, but its type depends on the form of its declarator. A declarator isread as an
assertion that when its identifier appears in an expression of the same form as the
declarator, it yields an object of the specified type.

Considering only the type parts of the declaration specifiers (Par. A.8.2) and a
particular declarator, a declaration has the form ~T D' where Tisatypeand Disa
declarator. The type attributed to the identifier in the various forms of declarator is
described inductively using this notation.

In adeclaration T DwhereDisan unadored identifier, the type of theidentifier isT.

Inadeclaration T DwherebD hastheform

(D1)
then the type of the identifier in D1 isthe same as that of D. The parentheses do not alter
the type, but may change the binding of complex declarators.

A .8.6.1 Pointer Declarators
In adeclaration T DwherebD hastheform
* type-qualifier-listopt D1

and the type of the identifier in the declaration T D1 is ~"type-modifier T," the type of the
identifier of D is “type-modifier type-qualifier-list pointer to T." Qualifiers following *
apply to pointer itself, rather than to the object to which the pointer points.

For example, consider the declaration

int *ap[];
Here ap[] playstheroleof D1; adeclaration i nt ap[]"" (below)would giveap thetype
Tarray of int," the type-qualifier list is empty, and the type-modifier is “array of."
Hence the actual declaration givesap thetype “array to pointerstoi nt ."

Asother examples, the declarations

int i, *pi, *const cpi = & ;

const int ci = 3, *pci;
declarean integer i and a pointer to an integer pi . Thevalue of the constant pointer cpi
may not be changed; it will always point to the same location, although the value to
which it refers may be altered. The integer ci is constant, and may not be changed
(though it may be initialized, as here.) The type of pci is “pointer to const int," and
pci itself may be changed to point to another place, but the value to which it points may
not be altered by assigning through pci .

A.8.6.2 Array Declarators
In adeclaration T DwhereD hastheform

D1 [constant-expressiongp]

202

and the type of the identifier in the declaration T D1 is ~"type-modifier T," the type of the
identifier of Dis “type-modifier array of T." If the constant-expression is present, it must
have integral type, and value greater than O. If the constant expression specifying the
bound ismissing, the array has an incompletetype.

An array may be constructed from an arithmetic type, from a pointer, from a structure
or union, or from another array (to generate a multi-dimensional array). Any type from
which an array is constructed must be complete; it must not be an array of structure of
incomplete type. This implies that for a multi-dimensional array, only the first
dimension may be missing. The type of an object of incomplete aray type is completed
by another, complete, declaration for the object (Par.A.10.2), or by initializing it

(Par.A.8.7). For example,

float fa[17], *afp[1l7];
declaresan array of f | oat humbersand an array of pointerstof| oat numbers. Also,

static int x3d[3][5][7];
declares a static three-dimensional array of integers, with rank 3 X5 X 7. In complete
detail, x3d is an array of three items. each item is an array of five arrays; each of the
latter arrays is an array of seven integers. Any of the expressions x3d, x3d[i],
x3d[i][j],x3d[i][j][k] may reasonably appear in an expression. Thefirst three have
type array,"’, the last has type i nt. More specifically, x3d[i][j] is an array of 7
integers, and x3d[i] isan array of 5arraysof 7 integers.

The array subscripting operation is defined so that E1[E2] is identical to * (E1+E2) .
Therefore, despite its asymmetric appear ance, subscripting is a commutative oper ation.
Because of the conversion rulesthat apply to + and to arrays (ParsA6.6, A.7.1, A.7.7), if
El isan array and E2 an integer, then E1[E2] referstothe E2-th member of E1.

In the example, x3d[i][j][k] is equivalent to *(x3d[i][j] + k). The first
subexpression x3d[i][j] is converted by Par.A.7.1 to type pointer to array of
integers,'" by Par.A.7.7, the addition involves multiplication by the size of an integer. It
follows from the rules that arrays are stored by rows (last subscript varies fastest) and
that the first subscript in the declaration helps determine the amount of storage
consumed by an array, but playsno other part in subscript calculations.

A .8.6.3 Function Declarators
In anew-style function declaration T DwhereD hastheform
D1 (parameter-type-list)
and the type of the identifier in the declaration T D1 is type-modifier T," the type of the
identifier of D is ~“type-modifier function with arguments parameter-type-list returning

T."

The syntax of the parametersis

parameter-type-list:
parameter-list
parameter-list,

203

parameter-list:
parameter-declaration
parameter-list, parameter-declaration

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declarator gpt

In the new-style declaration, the parameter list specifiesthe types of the parameters. As
a gpecial case, the declarator for a new-style function with no parameters has a
parameter list consisting soley of the keyword voi d. If the parameter list ends with an
ellipsis *°, ...", then the function may accept more arguments than the number of
parameter s explicitly described, see Par.A.7.3.2.

The types of parameters that are arrays or functions are altered to pointers, in
accordance with the rules for parameter conversions, see Par.A.10.1. The only storage
class specifier permitted in a parameter's declaration isregi st er, and this specifier is
ignored unless the function declarator heads a function definition. Similarly, if the
declaratorsin the parameter declarations contain identifiers and the function declarator
does not head a function definition, the identifiers go out of scope immediately. Abstract
declarators, which do not mention theidentifiers, are discussed in Par.A.8.8.

In an old-style function declaration T DwhereD hastheform
D1 (identifier-listop)
and the type of the identifier in the declaration T D1 is "~ type-modifier T," the type of the
identifier of D is “type-modifier function of unspecified arguments returning T7." The
parameters (if present) havetheform
identifier-list:
identifier
identifier-list, identifier
In the old-style declar ator, the identifier list must be absent unlessthe declarator isused
in the head of a function definition (Par.A.10.1). No information about the types of the
parametersissupplied by the declaration.
For example, the declaration
int £(), *fpi(), (*pfi)();
declares a function f returning an integer, a function f pi returning a pointer to an
integer, and a pointer pfi to a function returning an integer. In none of these are the
parameter types specified; they are old-style.

In the new-style declaration

int strcpy(char *dest, const char *source), rand(void);

204

strcpy Is a function returning i nt, with two arguments, the first a character pointer,
and the second a pointer to constant characters. The parameter names are effectively

comments. The second function r and takes no arguments and returnsi nt .
Function declarators with parameter prototypes are, by far, the most important language change
introduced by the ANSI standard. They offer an advantage over the “~old-styl€'" declarators of the
first edition by providing error-detection and coercion of arguments across function calls, but at a
cost: turmoil and confusion during their introduction, and the necessity of accomodating both
forms. Some syntactic ugliness was required for the sake of compatibility, namely voi d as an
explicit marker of new-style functionswithout parameters.

Theélipsisnotation =, ... " for variadic functionsis also new, and, together with the macrosin
the standard header <st dar g. h>, formalizes a mechanism that was officially forbidden but
unofficially condoned in thefirst edition.

These notations wer e adapted from the C++ language.
A.8.7 Initialization

When an object is declared, its init-declarator may specify an initial value for the
identifier being declared. The initializer is preceded by =, and is either an expression, or
a list of initializers nested in braces. A list may end with a comma, a nicety for neat
formatting.

initializer:
assignment-expression
{ initializer-list}

{ initializer-list, }

initializer-list:
initializer
initializer-list, initializer

All the expressions in the initializer for a static object or array must be constant
expressions as described in Par.A.7.19. The expressionsin the initializer for an aut o or
regi ster object or array must likewise be constant expressions if the initializer is a
brace-enclosed list. However, if the initializer for an automatic object is a single
expression, it need not be a constant expression, but must merely have appropriate type
for assgnment to the object.

Thefirst edition did not countenance initialization of automatic structures, unions, or arrays. The
ANSI standard allows it, but only by constant constructions unless the initializer can be expressed
by a smple expression.

A static object not explicitly initialized is initialized as if it (or its members) were
assigned the constant 0. The initial value of an automatic object not explicitly intialized
isundefined.

The initializer for a pointer or an object of arithmetic type is a single expression,
perhapsin braces. The expression isassigned to the object.

The initializer for a structure is either an expression of the same type, or a brace-
enclosed list of initializers for its members in order. Unnamed bit-field members are
ignored, and are not initialized. If there are fewer initializersin the list than members of
the structure, the trailing members are initialized with 0. There may not be more

205

initializers than members. Unnamed bit-field members are ignored,and are not
initialized.

The initializer for an array is a brace-enclosed list of initializers for its members. If the
array has unknown size, the number of initializers deter mines the size of the array, and
its type becomes complete. If the array has fixed size, the number of initializers may not
exceed the number of members of the array; if there are fewer, thetrailing membersare
initialized with O.

As a special case, a character array may be initialized by a string literal; successive
characters of the string initialize successive members of the array. Similarly, a wide
character literal (Par.A.2.6) may initialize an array of type wchar _t. If the array has
unknown size, the number of charactersin the string, including the terminating null
character, determinesits size; if its size is fixed, the number of charactersin the string,
not counting the terminating null character, must not exceed the size of the array.

The initializer for a union is either a single expression of the same type, or a brace-
enclosed initializer for thefirst member of the union.

The first edition did not allow initialization of unions. The “first-member" rule is clumsy, but is
hard to generalize without new syntax. Besides allowing unions to be explicitly initialized in at
least a primitive way, this ANSl rule makes definite the semantics of static unions not explicitly
initialized.

An aggregate is a structure or array. If an aggregate contains members of aggregate
type, the initialization rules apply recursively. Braces may be elided in the initialization
as follows: if the initializer for an aggregate's member that itself is an aggregate begins
with a left brace, then the succeding comma-separated list of initializers initializes the
members of the subaggregate; it is erroneous for there to be more initializers than
members. If, however, the initializer for a subaggregate does not begin with a left brace,
then only enough elements from the list are taken into account for the members of the
subaggregate; any remaining members are left to initialize the next member of the
aggr egate of which the subaggregateisa part.

For example,

int x[] ={ 1, 3, 5};
declares and initializesx asa 1-dimensional array with three members, since no size was
specified and therearethreeinitializers.

b
is a completely-bracketed initialization: 1, 3 and 5 initialize the first row of the array
y[0], namely y[0]1[0],y[0][1],andy[0][2] .Likewisethe next two linesinitializey[1]
and y[2] . The initializer ends early, and therefore the elements of y[3] are initialized
with 0. Precisely the same effect could have been achieved by

float y[4][3] = {
1, 3, 5, 2, 4, 6, 3, 5, 7
b

206

Theinitializer for y begins with a left brace, but that for y[0] does not; therefore three
elements from thelist are used. Likewise the next three are taken successively for y[1]
and for y[2] . Also,

float y[4][3] = {
. {1}, {2} {3} {4}

initializes the first column of y (regarded as a two-dimensional array) and leavestherest
0.

Finally,

char nsg[] = "Syntax error on line %\n";
shows a character array whose members are initialized with a string; its size includes
the terminating null character.

A.8.8 Type names

In several contexts (to specify type conversions explicitly with a cast, to declare
parameter types in function declarators, and as argument of si zeof) it isnecessary to
supply the name of a data type. This is accomplished using a type name, which is
syntactically a declaration for an object of that type omitting the name of the object.

type-name:
specifier-qualifier-list abstract-declarator gpt

abstract-declarator:
pointer
pointer o direct-abstract-declarator

direct-abstract-declarator:
(abstract-declarator)
direct-abstract-declarator ot [cOnstant-expressiongp]
direct-abstract-declarator o (parameter-type-listop)

It is possible to identify uniquely the location in the abstract-declarator where the
identifier would appear if the construction were a declarator in a declaration. The
named typeisthen the same asthetype of the hypothetical identifier. For example,

i nt
i nt
int *[3
int (*)[]
int *()
int (*[])(void)

name respectively the types integer,” ““pointer to integer,” “array of 3 pointers to

integers,'" pointer to an unspecified number of integers' ““function of unspecified

parameters returning pointer to integer,' and array, of unspecified size, of pointersto

functions with no parameters each returning an integer."

]
[

AN % %

A.8.9 Typedef

207

Declarations whose stor age class specifier ist ypedef do not declare objects; instead they
defineidentifiersthat nametypes. These identifiersare called typedef names.

typedef-name:
identifier

A typedef declaration attributes a type to each name among its declaratorsin the usual
way (see Par.A.8.6). Thereafter, each such typedef name is syntactically equivalent to a
type specifier keyword for the associated type.

For example, after

typedef |ong Bl ockno, *Bl ockptr;
typedef struct { double r, theta; } Conplex;

the constructions

Bl ockno b;

extern Bl ockptr bp;

Compl ex z, *zp;
are legal declarations. Thetype of b is| ong, that of bp is "pointer tol ong," and that of z
isthe specified structure; zp isa pointer to such a structure.

t ypedef doesnot introduce new types, only synonymsfor typesthat could be specified in
another way. In the example, b hasthe sametypeasany | ong object.

Typedef names may be redeclared in an inner scope, but a non-empty set of type
specifiersmust be given. For example,

extern Bl ockno;
doesnot redeclareBl ockno, but

extern int Blockno;
does.

A.8.10 Type Equivalence

Two type specifier lists are equivalent if they contain the same set of type specifiers,
taking into account that some specifiers can be implied by others (for example, | ong
alone implies I ong i nt). Structures, unions, and enumerations with different tags are
distinct, and a tagless union, structure, or enumeration specifiesa uniquetype.

Two types are the same if their abstract declarators (Par.A.8.8), after expanding any
t ypedef types, and deleting any function parameter specifiers, are the same up to the
equivalence of type specifier lists. Array sizes and function parameter types are
significant.

A.9 Statements

Except as described, statements are executed in sequence. Statements ar e executed for
their effect, and do not have values. They fall into several groups.

208

statement:
|abeled-statement
expression-statement
compound-statement
sel ection-statement
iteration-statement
jump-statement

A.9.1 Labeled Statements
Statementsmay carry label prefixes.

|abel ed-statement:

identifier : statement

case constant-expression : statement
default : statement

A label consisting of an identifier declares the identifier. The only use of an identifier
label is as a target of got o. The scope of the identifier is the current function. Because
labels have their own name space, they do not interfere with other identifiers and cannot
beredeclared. SeePar.A.11.1.

Case labels and default labels are used with the switch statement (Par.A.9.4). The
constant expression of case must have integral type.

Labelsthemsalves do not alter the flow of control.

A.9.2 Expression Statement
Most statements ar e expression statements, which have the form

expression-statement:
expressiONopr;

Most expression statements are assignments or function calls. All side effects from the
expression are completed before the next statement is executed. If the expression is
missing, the construction is called a null statement; it is often used to supply an empty
body to an iteration statement to place a label.

A.9.3 Compound Statement

So that several statements can be used where one is expected, the compound statement
(also called ““block') is provided. The body of a function definition is a compound
Sstatement.

compound-statement:
{ declaration-listoy statement-listop }

declaration-list:
declaration
declaration-list declaration

209

statement-list:
statement
statement-list statement

If an identifier in the declaration-list was in scope outside the block, the outer
declaration is suspended within the block (see Par.A.11.1), after which it resumes its
force. An identifier may be declared only once in the same block. These rules apply to
identifiers in the same name space (Par.A.11); identifiers in different name spaces are
treated as distinct.

Initialization of automatic objectsis performed each time the block is entered at the top,
and proceeds in the order of the declarators. If a jump into the block is executed, these
initializations are not performed. Initialization of static objects are performed only
once, beforethe program begins execution.

A.9.4 Selection Statements
Sdlection statements choose one of sever al flows of control.

sel ection-statement:
i f (expression) statement
i f (expression) statement el se statement
swi t ch (expression) statement

In both forms of thei f statement, the expression, which must have arithmetic or pointer
type, is evaluated, including all side effects, and if it compares unequal to O, the first
substatement is executed. In the second form, the second substatement is executed if the
expression is 0. The el se ambiguity is resolved by connecting an el se with the last
encountered el se-lessi f at the same block nesting level.

The swi tch statement causes control to be transferred to one of several statements
depending on the value of an expression, which must have integral type. The
substatement controlled by a swi t ch is typically compound. Any statement within the
substatement may be labeled with one or more case labels (Par.A.9.1). The controlling
expression undergoes integral promotion (Par.A.6.1), and the case constants are
converted to the promoted type. No two of these case constants associated with the same
switch may have the same value after conversion. There may also be at most one
def aul t label associated with a switch. Switches may be nested; acase or def aul t label
isassociated with the smallest switch that containsit.

When the swi t ch statement is executed, its expression is evaluated, including all side
effects, and compar ed with each case constant. If one of the case constantsis equal to the
value of the expression, control passesto the statement of the matched case labél. If no
case constant matches the expression, and if thereisa def aul t label, control passesto
the labeled statement. If no case matches, and if there is no def aul t, then none of the
substatements of the swtich is executed.

In the first edition of this book, the controlling expression of swi t ch, and the case constants,
wererequired to havei nt type.

A.9.5 Iteration Statements

210

| teration statements specify looping.

iteration-statement:

whi | e (expression) statement

do statement whi | e (expression);

f or (expressiongpt; EXPressiong; EXpPressiong) statement

In the whi | e and do statements, the substatement is executed repeatedly so long as the
value of the expression remains unequal to 0; the expression must have arithmetic or
pointer type. With whi | e, the test, including all side effects from the expression, occurs
befor e each execution of the statement; with do, thetest follows each iteration.

In the for statement, the first expression is evaluated once, and thus specifies
initialization for the loop. Thereisno restriction on itstype. The second expression must
have arithmetic or pointer type; it is evaluated before each iteration, and if it becomes
equal to 0, the f or isterminated. The third expression is evaluated after each iteration,
and thus specifies a re-initialization for the loop. Thereisno restriction on itstype. Side-
effects from each expression are completed immediately after its evaluation. If the
substatement does not contain cont i nue, a statement

for (expressionl; expression2; expression3) statement

isequivalent to

expressi onl;

whi |l e (expression2) {
st at ement
expr essi on3;

}
Any of the three expressions may be dropped. A missing second expression makes the
implied test equivalent to testing a non-zer o element.

A.9.6 Jump statements
Jump statementstransfer control unconditionally.

jump-statement:
got o identifier;
conti nue;
br eak;
return exXpressi oNgpy;

In the got o statement, the identifier must be a label (Par.A.9.1) located in the current
function. Control transfersto the labeled statement.

A conti nue statement may appear only within an iteration statement. It causes control

to pass to the loop-continuation portion of the smallest enclosing such statement. More
precisaly, within each of the statements

while (...) { do { for (...) {

211
contin: ; contin: ; contin:
} _)} owhile (L0 I
acont i nue not contained in a smaller iteration statement isthe sameasgot o conti n.

A br eak statement may appear only in an iteration statement or aswi t ch statement, and
terminates execution of the smallest enclosing such statement; control passes to the
statement following the terminated statement.

A function returnstoitscaller by theret ur n statement. When r et ur n isfollowed by an
expression, the value is returned to the caller of the function. The expression is
converted, as by assignment, to thetypereturned by the function in which it appears.

Flowing off the end of a function is equivalent to a return with no expression. In either
case, thereturned valueisundefined.

A.10 External Declarations

The unit of input provided to the C compiler is called a trandation unit; it consists of a
sequence of exter nal declarations, which are either declarationsor function definitions.

translation-unit:
external-declaration
translation-unit external-declaration

external-declaration:
function-definition
declaration

The scope of external declarations persists to the end of the trandation unit in which
they are declared, just as the effect of declarations within the blocks persists to the end
of the block. The syntax of external declarations is the same as that of all declarations,
except that only at thislevel may the code for functions be given.

A.10.1 Function Definitions

Function definitions have theform

function-definition:
declaration-specifier sy, declarator declaration-liste: compound-statement

The only storage-class specifiers allowed among the declaration specifiersare ext er n or
static; seePar.A.11.2 for thedistinction between them.

A function may return an arithmetic type, a structure, a union, a pointer, or voi d, but
not a function or an array. The declarator in a function declaration must specify
explicitly that the declared identifier has function type; that is, it must contain one of the
forms (see Par .A.8.6.3).

direct-declarator (parameter-type-list)
direct-declarator (identifier-listopt)

212

where the direct-declarator isan identifier or a parenthesized identifier. In particular, it
must not achieve function type by meansof at ypedef .

In thefirst form, the definition is a new-style function, and its parameters, together with
their types, are declared in its parameter type list; the declaration-list following the
function's declarator must be absent. Unless the parameter type list consists solely of
voi d, showing that the function takes no parameters, each declarator in the parameter
type list must contain an identifier. If the parameter type list ends with ™, ..." then
the function may be called with more arguments than parameters; the va_ar g macro
mechanism defined in the standard header <st darg. h> and described in Appendix B
must be used to refer to the extra arguments. Variadic functions must have at least one
named parameter.

In the second form, the definition is old-style: the identifier list names the parameters,
while the declaration list attributes types to them. If no declaration is given for a
parameter, itstypeistaken to bei nt . The declaration list must declare only parameters
named in the list, initialization is not permitted, and the only storage-class specifier
possibleisregi ster.

In both styles of function definition, the parameters are understood to be declared just
after the beginning of the compound statement constituting the function's body, and
thus the same identifiers must not be redeclared there (although they may, like other
identifiers, be redeclared in inner blocks). If a parameter is declared to have type
Tarray of type'' the declaration is adjusted to read “pointer to type' similarly, if a
parameter is declared to have type ““function returning type'' the declaration is
adjusted to read “pointer to function returning type.'" During the call to a function, the
arguments are converted as necessary and assigned to the parameters; see Par.A.7.3.2.

New-style function definitions are new with the ANSI standard. There is also a small change in
the details of promotion; the first edition specified that the declarations of f | oat parameters
were adjusted to read doubl e. The difference becomes noticable when a pointer to a parameter
is generated within afunction.

A complete example of a new-style function definition is

int max(int a, int b, int c)
int m

m=(a >b) ? a: b
return (m>c) ? m: c;

Here i nt is the declaration specifier; max(int a, int b, int c) isthe function's
declarator,and { ... } istheblock giving the codefor the function. The corresponding
old-style definition would be

int max(a, b, c)
int a, b, c;

{

}
wherenowint max(a, b, c) isthedeclarator,andint a, b, c; isthedeclaration list
for the parameters.

[* ... %

213
A.10.2 External Declarations

External declarations specify the characteristics of objects, functions and other
identifiers. The term ““external'' refers to their location outside functions, and is not
directly connected with the ext er n keyword; the storage class for an exter nally-declar ed
object may be left empty, or it may be specified asextern or stati c.

Several external declarations for the same identifier may exist within the same
trandation unit if they agree in type and linkage, and if there is at most one definition
for theidentifier.

Two declarations for an object or function are deemed to agree in type under therule
discussed in Par.A.8.10. In addition, if the declarations differ because one type is an
incomplete structure, union, or enumeration type (Par.A.8.3) and the other is the
corresponding completed type with the same tag, the types are taken to agree.
Moreover, if one type is an incomplete array type (Par.A.8.6.2) and the other is a
completed array type, the types, if otherwise identical, are also taken to agree. Finally, if
one type specifies an old-style function, and the other an otherwise identical new-style
function, with parameter declarations, thetypes are taken to agree.

If the first external declarator for a function or object includes the st at i ¢ specifier, the
identifier hasinternal linkage, otherwise it has external linkage. Linkage is discussed in
Par.11.2.

An external declaration for an object is a definition if it has an initializer. An external
object declaration that does not have an initializer, and does not contain the extern
specifier, is a tentative definition. If a definition for an object appears in a trandation
unit, any tentative definitions are treated merely as redundant declarations. If no
definition for the object appears in the trandation unit, all its tentative definitions
become a single definition with initializer O.

Each object must have exactly one definition. For objects with internal linkage, thisrule
applies separately to each trandation unit, because inter nally-linked objects are unique
to atrangdation unit. For objectswith external linkage, it appliesto the entire program.

Although the one-definition rule is formulated somewhat differently in the first edition of this
book, it isin effect identical to the one stated here. Some implementations relax it by generalizing
the notion of tentative definition. In the alternate formulation, which is usual in UNIX systems
and recognized as a common extension by the Standard, all the tentative definitions for an
externally linked object, throughout all the trandation units of the program, are considered
together instead of in each trandation unit separately. If a definition occurs somewhere in the
program, then the tentative definitions become merely declarations, but if no definition appears,
then all itstentative definitions become a definition with initializer O.

A.11 Scope and Linkage

A program need not all be compiled at one time: the source text may be kept in several
files containing trandlation units, and precompiled routines may be loaded from
libraries. Communication among the functions of a program may be carried out both
through calls and through manipulation of external data.

Therefore, there are two kinds of scope to consider: first, the lexical scope of an
identifier which is the region of the program text within which the identifier's

214

characteristics are understood; and second, the scope associated with objects and
functions with external linkage, which deter mines the connections between identifiersin
separ ately compiled trandlation units.

A.11.1 Lexical Scope

Identifiersfall into several name spaces that do not interfere with one another; the same
identifier may be used for different purposes, even in the same scope, if the usesarein
different name spaces. These classes are: objects, functions, typedef names, and enum
constants; labels; tags of structures or unions, and enumerations;, and members of each

structureor union individually.

These rules differ in several ways from those described in the first edition of this manual. Labels
did not previoudly have their own name space; tags of structures and unions each had a separate
space, and in some implementations enumer ations tags did as well; putting different kinds of tags
into the same space is a new restriction. The most important departure from the first edition is
that each structure or union creates a separate name space for its members, so that the same
name may appear in several different structures. This rule has been common practice for several
years.

The lexical scope of an object or function identifier in an external declaration begins at
the end of its declarator and persists to the end of the trandation unit in which it
appears. The scope of a parameter of a function definition begins at the start of the
block defining the function, and persists through the function; the scope of a parameter
in a function declaration ends at the end of the declarator. The scope of an identifier
declared at the head of a block begins at the end of its declarator, and persiststo theend
of the block. The scope of a label is the whole of the function in which it appears. The
scope of a structure, union, or enumeration tag, or an enumeration constant, begins at
its appearance in a type specifier, and persists to the end of a trandation unit (for
declarations at the external level) or to the end of the block (for declarations within a
function).

If an identifier is explicitly declared at the head of a block, including the block
congtituting a function, any declaration of the identifier outside the block is suspended
until the end of the block.

A.11.2 Linkage

Within a trandation unit, all declarations of the same object or function identifier with
internal linkage refer to the same thing, and the object or function is unique to that
trandlation unit. All declarations for the same object or function identifier with external
linkage refer to the same thing, and the object or function is shared by the entire
program.

As discussed in Par.A.10.2, the first external declaration for an identifier gives the
identifier internal linkageif the st ati ¢ specifier isused, external linkage otherwise. If a
declaration for an identifier within a block does not include the ext er n specifier, then
the identifier has no linkage and is unique to the function. If it doesinclude ext er n, and
an external declaration for is active in the scope surrounding the block, then the
identifier has the same linkage as the external declaration, and refersto the same object
or function; but if no external declaration isvisible, itslinkage is external.

A.12 Preprocessing

215

A preprocessor performs macro substitution, conditional compilation, and inclusion of
named files. Lines beginning with #, perhaps preceded by white space, communicate
with this preprocessor. The syntax of these lines is independent of the rest of the
language; they may appear anywhere and have effect that lasts (independent of scope)
until the end of the trandation unit. Line boundaries are significant; each line is
analyzed individually (bus see Par.A.12.2 for how to adjoin lines). To the preprocessor, a
token is any language token, or a character sequence giving a file name as in the
#i ncl ude directive (Par.A.12.4); in addition, any character not otherwise defined is
taken as a token. However, the effect of white spaces other than space and horizontal tab
isundefined within preprocessor lines.

Preprocessing itself takes place in several logically successive phases that may, in a
particular implementation, be condensed.

1. First, trigraph sequences as described in Par.A.12.1 are replaced by their
equivalents. Should the operating system environment require it, newline
charactersareintroduced between thelines of the sourcefile.

2. Each occurrence of a backslash character \ followed by a newline is deleted, this
splicing lines (Par.A.12.2).

3. Theprogram is split into tokens separated by white-space characters, comments
are replaced by a single space. Then preprocessing directives are obeyed, and
macr os (Pars.A.12.3-A.12.10) are expanded.

4. Escape sequences in character constants and string literals (Pars. A.2.5.2, A.2.6)
arereplaced by their equivalents; then adjacent string literals are concatenated.

5. Theresult istrandated, then linked together with other programs and libraries,
by collecting the necessary programs and data, and connecting exter nal functions
and object referencesto their definitions.

A.12.1 Trigraph Sequences

The character set of C source programs is contained within seven-bit ASCII, but isa
superset of the 1SO 646-1983 Invariant Code Set. In order to enable programs to be
represented in the reduced set, all occurrences of the following trigraph sequences are
replaced by the corresponding single character. This replacement occurs before any
other processing.

2= # 22(| ?27< |
220\ 22)] 272>)
220 A 221 | 27. -~

No other such replacements occur .
Trigraph sequences are new with the ANS| standard.

A.12.2 Line Splicing

Lines that end with the backslash character \ are folded by deleting the backslash and
the following newline character. This occur s before division into tokens.

A.12.3 Macro Definition and Expansion
A control line of theform

defi ne identifier token-sequence

216

causes the preprocessor to replace subsequent instances of the identifier with the given
sequence of tokens; leading and trailing white space around the token sequence is
discarded. A second #def i ne for the sameidentifier iserroneous unlessthe second token
sequence is identical to the first, where all white space separations are taken to be
equivalent.

A lineof theform
define identifier (identifier-list) token-sequence

where there is no space between the first identifier and the (, is a macro definition with
parameters given by the identifier list. Aswith thefirst form, leading and trailing white
space arround the token sequence is discarded, and the macro may be redefined only
with a definition in which the number and spelling of parameters, and the token
sequence, isidentical.

A control line of theform
undef identifier

causes the identifier's preprocessor definition to be forgotten. It is not erroneous to
apply #undef to an unknown identifier.

When a macr o has been defined in the second form, subsequent textual instances of the
macro identifier followed by optional white space, and then by (, a sequence of tokens
separated by commas, and a) constitute a call of the macro. The arguments of the call
are the comma-separated token sequences, commas that are quoted or protected by
nested parentheses do not separate arguments. During collection, arguments are not
macr o-expanded. The number of arguments in the call must match the number of
parametersin the definition. After the arguments areisolated, leading and trailing white
space is removed from them. Then the token sequence resulting from each argument is
substituted for each unquoted occurrence of the corresponding parameter'sidentifier in
the replacement token sequence of the macro. Unless the parameter in the replacement
sequence is preceded by #, or preceded or followed by ##, the argument tokens are
examined for macro calls, and expanded as necessary, just beforeinsertion.

Two special operators influence the replacement process. First, if an occurrence of a
parameter in the replacement token sequence is immediately preceded by #, string
guotes (") are placed around the corresponding parameter, and then both the # and the
parameter identifier are replaced by the quoted argument. A \ character is inserted
before each " or \ character that appears surrounding, or inside, a string literal or
character constant in the argument.

Second, if the definition token sequence for either kind of macro contains a ## operator,
then just after replacement of the parameters, each ## is deleted, together with any
white space on either side, so as to concatenate the adjacent tokens and form a new
token. The effect is undefined if invalid tokens are produced, or if the result depends on
the order of processing of the ## operators. Also, ## may not appear at the beginning or
end of a replacement token sequence.

In both kinds of macro, the replacement token sequence is repeatedly rescanned for
mor e defined identifiers. However, once a given identifier has been replaced in a given

217

expansion, it is not replaced if it turns up again during rescanning; instead it is left
unchanged.

Even if the final value of a macro expansion begins with with #, it is not taken to be a
preprocessing directive.

The details of the macro-expansion process are described more precisely in the ANS| standard
than in the first edition. The most important change is the addition of the # and ## operators,
which make quotation and concatenation admissible. Some of the new rules, especially those
involving concatenation, are bizarre. (See example below.)

For example, thisfacility may be used for ““manifest-constants," asin

#define TABSI ZE 100
i nt tabl e[TABSI ZE] ;

Thedefinition

#define ABSDI FF(a, b) ((a)>(b) ? (a)-(b) : (b)-(a))
defines a macro to return the absolute value of the difference between its arguments.
Unlike a function to do the same thing, the arguments and returned value may have any
arithmetic type or even be pointers. Also, the arguments, which might have side effects,
areevaluated twice, oncefor thetest and onceto producethevalue.

Given the definition

#define tenpfile(dir) #dir "9s"
themacrocall t enpfil e(/usr/tnp) yields

“/fusr/tm" "%s"
which will subsequently be catenated into a single string. After

#define cat(x, y) X ##y
thecall cat (var, 123) yieldsvar 123. However, thecall cat (cat (1, 2), 3) isundefined:
the presence of ## preventsthe argumentsof the outer call from being expanded. Thusit
producesthe token string

cat (1 , 2)3
and) 3 (the catenation of the last token of the first argument with the first token of the
second) isnot alegal token. If a second level of macro definition isintroduced,

#defi ne xcat (x, vy) cat (x,Vy)
things work more smoothly; xcat (xcat (1, 2), 3) does produce 123, because the
expansion of xcat itself doesnot involve the ## operator.
Likewise, ABSDI FF(ABSDI FF(a, b), c) producesthe expected, fully-expanded result.
A.12.4 File Inclusion

A control line of theform

include <filename>

218

causes the replacement of that line by the entire contents of the file filename. The
characters in the name filename must not include > or newline, and the effect is
undefined if it containsany of ", ' ,\, or / *. The named fileis searched for in a sequence
of implementation-defined places.

Similarly, a control line of theform

include "filename'

sear ches first in association with the original source file (a deliberately implementation-
dependent phrase), and if that search fails, then asin the first form. The effect of using
*,\,or /*inthefilenameremainsundefined, but > is permitted.

Finally, adirective of theform

incl ude token-sequence

not matching one of the previous formsisinterpreted by expanding the token sequence
as for normal text; one of the two forms with <...>or "..." must result, and is then

treated as previously described.

#i ncl ude filesmay be nested.

A.12.5 Conditional Compilation

Parts of a program may be compiled conditionally, according to the following schematic
syntax.

preprocessor-conditional:
if-line text elif-parts else-partqp #endi f

if-line:

i f constant-expression
ifdef identifier

i fndef identifier

eif-parts:
elif-line text
elif-partsop

elif-line:
el if constant-expression

else-part:
else-linetext

eseline
t#el se

Each of the directives (if-line, €lif-line, else-line, and #endi f) appears alone on a line.
The constant expressionsin #i f and subsequent #el i f linesare evaluated in order until

219

an expression with a non-zero value is found; text following a line with a zero value is
discarded. The text following the successful directive line is treated normally. ~ Text"
here refers to any material, including preprocessor lines, that is not part of the
conditional structure; it may be empty. Once a successful #i f or #elif line has been
found and its text processed, succeeding #el i f and #el se lines, together with their text,
are discarded. If all the expressions are zero, and there is an #el se, the text following
the #el se is treated normally. Text controlled by inactive arms of the conditional is
ignored except for checking the nesting of conditionals.

The constant expression in #i f and #elif is subject to ordinary macro replacement.
Moreover, any expressions of theform

def i ned identifier
or

defi ned (identifier)
are replaced, before scanning for macros, by 1L if the identifier is defined in the
preprocessor, and by oL if not. Any identifiers remaining after macro expansion are
replaced by oL. Finally, each integer constant is considered to be suffixed with L, so that

all arithmetic istaken to belong or unsigned long.

The resulting constant expression (Par.A.7.19) isrestricted: it must beintegral, and may
not contain si zeof , a cast, or an enumeration constant.

The control lines

#i f def identifier
#i f ndef identifier

areequivalent to

if defined identifier
if | definedidentifier

respectively.

#el i f is new since the first edition, although it has been available is some preprocessors. The
def i ned preprocessor operator isalso new.

A.12.6 Line Control

For the benefit of other preprocessors that generate C programs, a line in one of the
forms

1ine constant " filename"
| i ne constant

causes the compiler to believe, for purposes of error diagnostics, that the line number of
the next source lineis given by the decimal integer constant and the current input fileis

220

named by theidentifier. If the quoted filenameis absent, the remember ed name does not
change. Macrosin theline are expanded beforeit isinterpreted.

A.12.7 Error Generation
A preprocessor line of theform
error token-sequencegp
causes the preprocessor to write a diagnostic message that includes the token sequence.

A.12.8 Pragmas
A control lineof theform
pragma token-sequencegp

causes the preprocessor to perform an implementation-dependent action. An
unrecognized pragma isignored.

A.12.9 Null directive

A control line of theform
#

has no effect.

A.12.10 Predefined names

Several identifiers are predefined, and expand to produce special information. They,
and also the preprocessor expansion operator defined, may not be undefined or
redefined.

__LINE__ A decimal constant containing the current source line number.
__FILE__ A dtring literal containing the name of the file being compiled.

pate__ A String literal containing the date of compilation, in theform * Mmm dd
yyyy

__TIME__ A dtring literal containing thetime of compilation, in theform " hh: nm ss"
stoc Theconstant 1. It isintended that thisidentifier be defined tobe 1 only in

— standard-conforming implementations.

#error and #pr agna are new with the ANSI standard; the predefined preprocessor macrosare
new, but some of them have been availablein someimplementations.

A.13 Grammar

Below is a recapitulation of the grammar that was given throughout the earlier part of
thisappendix. It has exactly the same content, but isin different order.

The grammar has undefined terminal symbols integer-constant, character-constant,
floating-constant, identifier, string, and enumeration-constant; the typewriter style

221

words and symbols are terminals given literally. This grammar can be transformed
mechanically into input acceptable for an automatic parser-generator. Besides adding
whatever syntactic marking is used to indicate alternatives in productions, it is
necessary to expand the “one of'" constructions, and (depending on the rules of the
parser-generator) to duplicate each production with an opt symbol, once with the
symbol and once without. With one further change, namely deleting the production
typedef-name: identifier and making typedef-name a terminal symbol, this grammar is
acceptable to the YACC parser-generator. It has only one conflict, generated by thei f -
el se ambiguity.

translation-unit:
external-declaration
translation-unit external-declaration

external-declaration:
function-definition
declaration

function-definition:
declaration-specifier sy, declarator declaration-liste: compound-statement

declaration:
declaration-specifiers init-declarator-listop;

declaration-list:
declaration
declaration-list declaration

declaration-specifiers:
storage-class-specifier declaration-specifiersopt
type-specifier declaration-specifierSop
type-qualifier declaration-specifierSop

storage-class specifier: one of
auto register static extern typedef

type specifier: one of
void char short int long float double signed
unsi gned struct-or-union-specifier enum-specifier typedef-name

type-qualifier: one of
const volatile

struct-or-union-specifier:
struct-or-union identifierqy { struct-declaration-list }
struct-or-union identifier

struct-or-union: one of
struct union

struct-declaration-list:
struct declaration
struct-declaration-list struct declaration

init-declarator-list:
init-declarator
init-declarator-list, init-declarator

init-declarator:
declarator
declarator = initializer

struct-declaration:
specifier-qualifier-list struct-declarator-list;

specifier-qualifier-list:
type-specifier specifier-qualifier-listop
type-qualifier specifier-qualifier-listop

struct-declarator-list:
struct-declar ator
struct-declarator-list, struct-declarator

struct-declarator:
declarator
declaratorqp : constant-expression

enum-specifier:
enumidentifieroy { enumerator-list }
enumidentifier

enumerator-list:
enumer ator
enumerator-list, enumerator

enumerator:
identifier
identifier = constant-expression

declarator:
pointer o direct-declarator

direct-declarator:
identifier
(declarator)
direct-declarator [constant-expressionoyt]
direct-declarator (parameter-type-list)
direct-declarator (identifier-listop)

pointer:
* type-qualifier-listop
* type-qualifier-listop pointer

222

type-qualifier-list:
type-qualifier
type-qualifier-list type-qualifier

parameter-type-list:
parameter-list
parameter-list,

parameter-list:
parameter-declaration
parameter-list, parameter-declaration

parameter-declaration:
declaration-specifiers declarator
declaration-specifiers abstract-declarator opt

identifier-list:
identifier
identifier-list, identifier

initializer:
assignment-expression
{ initializer-list}

{ initializer-list, }

initializer-list:

initializer

initializer-list, initializer
type-name:

specifier-qualifier-list abstract-declarator gpt

abstract-declarator:
pointer
pointer o direct-abstract-declarator

direct-abstract-declarator:
(‘abstract-declarator)

direct-abstract-declarator ot [cOnstant-expressiongp]
direct-abstract-declarator o (parameter-type-listop)

typedef-name:
identifier

statement:
|abeled-statement
expression-statement
compound-statement
sel ection-statement
iteration-statement
jump-statement

223

|abel ed-statement:

identifier : statement

case constant-expression : statement
default : statement

expression-statement:
expressiONopt;

compound-statement:
{ declaration-listoy statement-listop }

statement-list:
statement
statement-list statement

sel ection-statement:
i f (expression) statement
i f (expression) statement el se statement
swi t ch (expression) statement

iteration-statement:

whi | e (expression) statement

do statement whi | e (expression);

f or (expressiongpt; EXPressiong; EXpPressiong) statement

jump-statement:
got o identifier;
conti nue;
br eak;
return exXpressi oNopy;

expression:
assignment-expression
expression, assignment-expression

assignment-expression:
conditional-expression

unary-expression assignment-operator assignment-expression

assignment-operator: one of
= *= [= U += -= <<= >>= &= "= =

conditional-expression:
logical-OR-expression

logical-OR-expression ? expression : conditional-expression

constant-expression:
conditional-expression

logical-OR-expression:
logical-AND-expression
logical-OR-expression | | logical-AND-expression

224

225

logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression | exclusive-OR-expression

exclusive-OR-expression:
AND-expression
exclusive-OR-expression ~ AND-expression

AND-expression:
equality-expression
AND-expression & equality-expression

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression ! = relational-expression

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

multiplicative-expression:
multiplicative-expression * cast-expression
multiplicative-expression / cast-expression
multiplicative-expression %cast-expression

cast-expression:
unary expression
(type-name) cast-expression

unary-expression:
postfix expression
++Unary expression
- - unary expression
unary-operator cast-expression

226

si zeof unary-expression
si zeof (type-name)

unary operator: one of
&* + - ~ |

postfix-expression:
primary-expression
postfix-expression[expression]
postfix-expression(argument-expression-listop)
postfix-expression.identifier
postfix-expression- >+identifier
postfix-expression++
postfix-expression- -

primary-expression:
identifier
constant
string
(expression)

argument-expression-list:
assignment-expression
assignment-expression-list, assignment-expression

constant:
integer-constant
character-constant
floating-constant
enumer ation-constant

The following grammar for the preprocessor summarizes the structure of control lines,
but is not suitable for mechanized parsing. It includes the symbol text, which means
ordinary program text, non-conditional preprocessor control lines, or complete
preprocessor conditional instructions.

control-line:

def i ne identifier token-sequence

def i ne identifier(identifier, ... , identifier) token-sequence
undef identifier

i ncl ude <filename>

i ncl ude "filename"

| i ne constant " filename"

I i ne constant

error token-sequenceo

pr agna token-sequenceg

H*

H OH OH OH H O H H R

preprocessor-conditional

preprocessor-conditional:
if-line text elif-parts el se-partqp #endi f

227

if-line:

i f constant-expression
ifdef identifier

i fndef identifier

eif-parts:
elif-line text
elif-partsop

elif-line:
el if constant-expression

else-part:
else-linetext

eseline
t#el se

228

Appendix B - Standard Library

This appendix is a summary of the library defined by the ANSI standard. The standard
library isnot part of the C language proper, but an environment that supports standard
C will provide the function declarations and type and macro definitions of this library.
We have omitted a few functions that are of limited utility or easily synthesized from
others, we have omitted multi-byte characters; and we have omitted discussion of locale
issues; that is, propertiesthat depend on local language, nationality, or culture.

The functions, types and macros of the standard library are declared in standard
headers:

<assert.h> <float.h> <mat h. h> <stdarg. h> <stdlib. h>
<ctype. h> <limts.h> <setjnp.h> <stddef.h> <string.h>
<errno. h> <l ocal e. h> <signal.h> <stdio.h> <tinme.h>

A header can be accessed by
#i ncl ude <header>

Headers may be included in any order and any number of times. A header must be
included outside of any external declaration or definition and before any use of anything
it declares. A header need not be a sour cefile.

External identifiersthat begin with an underscore arereserved for use by thelibrary, as
are all other identifiers that begin with an underscore and an upper-case letter or
another under score.

B.1 Input and Output: <stdio.h>

The input and output functions, types, and macros defined in <st di 0. h> represent
nearly onethird of thelibrary.

A stream is a source or destination of data that may be associated with a disk or other
peripheral. The library supports text streams and binary streams, although on some
systems, notably UNI X, these areidentical. A text stream is a sequence of lines; each line
has zero or more characters and is terminated by '\ n' . An environment may need to
convert a text stream to or from some other representation (such as mapping '\ n' to
carriage return and linefeed). A binary stream is a sequence of unprocessed bytes that
record internal data, with the property that if it iswritten, then read back on the same
system, it will compare equal.

A stream is connected to a file or device by opening it; the connection is broken by
closing the stream. Opening a file returns a pointer to an object of type FI LE, which
records whatever information is necessary to control the stream. We will use “file
pointer' and ““stream'' inter changeably when thereis no ambiguity.

When a program begins execution, the three streams st di n, stdout, and stderr are
already open.

229
B.1.1 File Operations

The following functions deal with operations on files. The type si ze_t isthe unsigned

integral type produced by thesi zeof operator.
FI LE *fopen(const char *fil enane, const char *nopde)

f open opens the named file, and returns a stream, or NULL if the attempt fails.
Legal valuesfor node include:

r* open text filefor reading
"W' createtext filefor writing; discard previous contentsif any
" append; open or createtext filefor writing at end of file

a

"r+" open text filefor update (i.e., reading and writing)
"wt+" createtext filefor update, discard previous contentsif any

" append; open or createtext filefor update, writing at end

Update mode permits reading and writing the same file; fflush or a file-
positioning function must be called between a read and a write or vice versa. If
the mode includes b after theinitial letter, asin "rb" or "w+b", that indicates a
binary file. Filenames are limited to FILENAME _MAX characters. At most

FOPEN_MAX files may be open at once.
FILE *freopen(const char *filenane, const char *node, FILE *stream

f reopen opens the file with the specified mode and associates the stream with it.
It returnsstream or NULL if an error occurs. f r eopen isnormally used to change

thefilesassociated with st di n, st dout , Or st derr.
int fflush(FILE *stream

On an output stream, fflush causes any buffered but unwritten data to be
written; on an input stream, the effect is undefined. It returns EOF for a write

error, and zero otherwise. f f | ush(NULL) flushesall output streams.
int fclose(FILE *stream

fcl ose flushes any unwritten data for stream discards any unread buffered
input, frees any automatically allocated buffer, then closes the stream. It returns

EOF if any errorsoccurred, and zero otherwise.
int renove(const char *fil enane)

renmove removesthe named file, so that a subsequent attempt to open it will fail. It

returnsnon-zero if the attempt fails.
i nt renane(const char *ol dnanme, const char *newnane)

r ename changesthe nameof afile; it returnsnon-zeroif the attempt fails.

FILE *tmpfil e(void)
tnpfile creates a temporary file of mode "wb+" that will be automatically
removed when closed or when the program terminates normally. tnpfile
returnsastream, or NULL if it could not create thefile.

char *tnpnam(char s[L_tnpnan])
t mpnan(NULL) createsastringthat isnot the name of an existing file, and returns
a pointer to an internal static array. t npnan(s) storesthestringin s aswell as
returning it as the function value; s must have room for at least L_t npnam
characters. t npnam generates a different name each time it is called; at most
TMP_MAX different names are guaranteed during execution of the program. Note

that t npnamcreates a name, not afile.
i nt setvbuf(FILE *stream char *buf, int node, size_ t size)

set vbuf controls buffering for the stream; it must be called before reading,
writing a any other operation. A node of _I OFBF causes full buffering, _I OLBF
line buffering of text files, and _I ONBF no buffering. If buf isnot NULL, it will be

a+

230

used as the buffer, otherwise a buffer will be allocated. si ze determines the

buffer size. set vbuf returnsnon-zerofor any error.
voi d setbuf (FILE *stream char *buf)

If buf is NULL, buffering is turned off for the stream. Otherwise, setbuf is
equivalent to (voi d) setvbuf(stream buf, _I OFBF, BUFSI Z).

B.1.2 Formatted Output

Theprintf functions provide formatted output conversion.

int fprintf(FILE *stream const char *format, ...)
fprintf convertsand writes output to st reamunder the control of f or mat. Thereturn
valueisthe number of characterswritten, or negativeif an error occurred.

The format string contains two types of objects: ordinary characters, which are copied
to the output stream, and conver sion specifications, each of which causes conversion and
printing of the next successive argument to fprintf. Each conversion specification
begins with the character %and ends with a conversion character. Between the %and the
conversion character theremay be, in order:

Flags (in any order), which modify the specification:
-, which specifiesleft adjustment of the converted argument in itsfield.
o +, which specifiesthat the number will always be printed with a sign.
o space: if thefirst character isnot asign, a space will be prefixed.
o 0: for numeric conversions, specifies padding to the field width with
leading zer os.
o #, which specifies an alternate output form. For o, the first digit will
become zero. For x or X, 0x or 0X will be prefixed to a non-zero result. For
e, E, f, g, and G, the output will always have a decimal point; for g and G,
trailing zeroswill not beremoved.
A number specifying a minimum field width. The converted argument will be
printed in a field at least this wide, and wider if necessary. If the converted
argument has fewer characters than the field width it will be padded on the left
(or right, if left adjustment has been requested) to make up the field width. The
padding character isnormally space, but iso if the zero padding flag is present.
A period, which separatesthefield width from the precision.
A number, the precision, that specifies the maximum number of charactersto be
printed from a string, or the number of digits to be printed after the decimal
point for e, E, or f conversions, or the number of significant digits for g or G
conversion, or the number of digitsto be printed for an integer (leading 0s will be
added to make up the necessary width).
A length modifier h, 1 (letter €l), or L. "h" indicates that the corresponding

o

argument isto be printed asa short or unsi gned short; 1" indicatesthat the
argument isal ong or unsi gned | ong, L' indicatesthat theargumentisal ong
doubl e.

Width or precision or both may be specified as*, in which casethe valueis computed by
converting the next argument(s), which must bei nt .

The conversion characters and their meanings are shown in Table B.1. If the character
after the %isnot a conversion character, the behavior isundefined.

231
Table B.1 Printf Conversions

Character | Argument type; Printed As

d, i i nt ; signed decimal notation.

\0 \i nt ; unsigned octal notation (without a leading zer o).

. X unsi gned i nt; unsigned hexadecimal notation (without a leading 0x or 0X),
’ using abcdef for 0x or ABCDEF for OX.

u i nt ; unsigned decimal notation.

c i nt ; single character, after conversion tounsi gned char

S char *; charactersfromthestringareprinted until a'\ 0' isreached or

until thenumber of charactersindicated by the precision have been printed.

doubl e; decimal notation of theform [-] mmm.ddd, wherethe number of d's
f isgiven by the precision. The default precision is 6; a precision of O
suppresses the decimal point.

doubl e; decimal notation of theform [-] m.dddddde+/ - xx or [-

e, E] m.dddddde+/ - xx, wherethe number of d'sis specified by the precision. The
default precision is 6; a precision of O suppressesthe decimal point.

doubl e; % or % isused if the exponent islessthan -4 or greater than or
9, G equal tothe precision; otherwise % isused. Trailing zerosand atrailing
decimal point arenot printed.

\p \voi d *; print asapointer (implementation-dependent representation).
N i nt *; thenumber of characterswritten sofar by thiscall toprintf is
written into the argument. No argument is converted.
% Ino argument is converted; print a %
int printf(const char *format, ...)
printf(...) isequivalenttofprintf(stdout, ...).
int sprintf(char *s, const char *format, ...)

sprintf isthesameasprintf except that the output iswritten into the string s,
terminated with '\ 0' . s must be big enough to hold the result. The return count
doesnot includethe' \ 0' .

i nt vprintf(const char *format, va_li st arg)

i nt viprintf(FILE *stream const char *format, va_list arg)
int vsprintf(char *s, const char *format, va |ist arg)

The functions vprintf, vfprintf, and vsprintf are equivalent to the
corresponding printf functions, except that the variable argument list is
replaced by ar g, which has been initialized by the va_st art macro and perhaps
va_ar g calls. Seethediscussion of <st dar g. h> in Section B.7.

B.1.3 Formatted I nput

Thescanf function dealswith formatted input conversion.

int fscanf(FILE *stream const char *format, ...)

fscanf reads from stream under control of format, and assigns converted values
through subsequent arguments, each of which must be a pointer. It returnswhen f or mat
isexhausted. f scanf returnseor if end of file or an error occurs before any conversion;
otherwiseit returnsthe number of input items converted and assigned.

232

The format string usually contains conversion specifications, which are used to direct
inter pretation of input. Theformat string may contain:

Blanks or tabs, which are not ignored.

Ordinary characters (not %), which are expected to match the next non-white
space character of the input stream.

Conversion specifications, consisting of a % an optional assignment suppr ession
character *, an optional number specifying a maximum field width, an optional
h, 1, or L indicating thewidth of the target, and a conversion character.

A conversion specification determines the conversion of the next input field. Normally
the result is placed in the variable pointed to by the corresponding argument. If
assignment suppression isindicated by *, asin % s, however, the input field is ssimply
skipped; no assignment is made. An input field is defined as a string of non-white space
characters; it extends either to the next white space character or until the field width, if
specified, is exhausted. Thisimplies that scanf will read across line boundaries to find
its input, since newlines are white space. (White space characters are blank, tab,
newline, carriagereturn, vertical tab, and formfeed.)

The conversion character indicates the interpretation of the input field. The

corresponding argument must be a pointer. The legal conversion characters are shown
in TableB.2.

The conversion charactersd, i, n, o, u, and x may be preceded by h if theargument isa
pointer to short rather than int, or by | (letter ell) if the argument is a pointer to | ong.
The conversion characterse, f, and g may be preceded by | if a pointer todoubl e rather
than f 1 oat isintheargument list, and by L if apointer toal ong doubl e.

Table B.2 Scanf Conversions

Character | Input Data; Argument type

d decimal integer; i nt *

‘i integer; i nt *. Theinteger may bein octal (leading 0) or hexadecimal (leading
0x or 0X).

o octal integer (with or without leading zero); i nt *.

‘U \unsigned decimal integer; unsi gned int *.

X Ihexadecimal integer (with or without leading 0x or 0X); i nt *.

characters; char *. The next input charactersare placed in theindicated
array, up tothe number given by thewidth field; thedefaultis1. No'\0' is
added. The normal skip over white space charactersissuppressed in this
case; to read the next non-white space character, use %s.

string of non-white space characters (not quoted); char *, pointing to an
S array of characterslarge enough to hold the string and a terminating' \ 0'
that will be added.

floating-point number; f1 oat *. Theinput format for f | oat 'sisan optional
e, f,g sign, a string of number s possibly containing a decimal point, and an optional
exponent field containing an E or e followed by a possibly signed integer.

p pointer valueasprinted by printf (" %");,void *.

233

writesinto the argument the number of charactersread so far by thiscall;
int *.Noinputisread. The converted item count isnot incremented.

matchesthe longest non-empty string of input charactersfrom the set
between brackets, char *. A'\0' isadded.[]...] includes] intheset.

matchesthe longest non-empty string of input character snot from the set

%] between brackets; char *. A"\ 0' isadded.[~]...] includes] inthe set.

% literal %; no assignment is made.
i nt scanf(const char *format, ...)
scanf (...) isidentical tofscanf(stdin, ...).
i nt sscanf(const char *s, const char *format, ...)
sscanf (s, ...) isequivalenttoscanf(...) exceptthat theinput charactersare

taken from thestrings.

B.1.4 Character Input and Output Functions

int fgetc(FILE *stream
f get c returnsthe next character of st reamasan unsi gned char (converted toan

i nt), or EOF if end of fileor error occurs.
char *fgets(char *s, int n, FILE *stream

fgets reads at most the next n-1 characters into the array s, stopping if a
newline is encountered; the newlineisincluded in the array, which isterminated

by'\0'.fgets returnss,or NULL if end of fileor error occurs.
int fputc(int c, FILE *stream

f put c writes the character ¢ (converted to an unsi gend char) on stream It

returnsthe character written, or EOF for error.
int fputs(const char *s, FILE *stream

f puts writes the string s (which need not contain \ n) on st reant it returns non-

negative, or EOF for an error.
int getc(FILE *stream

get c isequivalent to f get c except that if it isa macro, it may evaluate stream
mor e than once.

i nt getchar(void)
get char isequivalent toget c(stdin).

char *gets(char *s)
gets reads the next input line into the array s; it replaces the terminating
newlinewith '\ 0' . It returnss, or NULL if end of fileor error occurs.

int putc(int c, FILE *stream
put ¢ is equivalent to f put c except that if it isa macro, it may evaluate st ream
mor e than once.

i nt putchar(int c)
put char (c) isequivalent toputc(c, stdout).

i nt puts(const char *s)
put s writesthestrings and anewlineto st dout . It returnseor if an error occurs,

non-negative otherwise.
int ungetc(int c, FILE *stream

unget ¢ pushesc (converted to an unsi gned char) back ontost r eam whereit will
be returned on the next read. Only one character of pushback per stream is
guaranteed. EOF may not be pushed back. unget c returns the character pushed
back, or EOF for error.

B.1.5 Direct I nput and Output Functions

234

size t fread(void *ptr, size_t size, size_t nobj, FILE *stream
fread reads from streaminto the array ptr at most nobj objects of size si ze.
fread returns the number of objects read; this may be less than the number

requested. f eof and ferror must be used to deter mine status.

size t fwite(const void *ptr, size t size, size t nobj, FILE *strean
fwrite writes, fromthearray ptr,nobj objectsof sizesi ze onstream It returns
the number of objectswritten, which islessthan nobj on error.

B.1.6 File Positioning Functions

int fseek(FILE *stream |ong offset, int origin)
f seek setsthefileposition for st r eani a subsequent read or write will accessdata
beginning at the new position. For a binary file, the position is set to of f set
charactersfrom ori gi n, which may be SEEK_SET (beginning), SEEK_CUR (current
position), or SEEK_END (end of file). For a text stream, of f set must be zero, or a
valuereturned by ftel | (in which caseori gi n must be SEEK_SET). f seek returns

non-zeroon error.
long ftell (FILE *stream

ftel | returnsthecurrent file position for stream or -1 on error.
void rew nd(FILE *stream

rewi nd(fp) isequivalent tof seek(fp, OL, SEEK SET); clearerr(fp).

int fgetpos(FILE *stream fpos_t *ptr)
f get pos records the current position in streamin *ptr, for subsequent use by
f set pos. Thetypefpos_t issuitablefor recording such values. f get pos returns

non-zeroon error.
int fsetpos(FILE *stream const fpos_ t *ptr)

f set pos positions st reamat the position recorded by f get pos in *ptr. fset pos
returnsnon-zeroon &ror.

B.1.7 Error Functions

Many of the functionsin the library set statusindicatorswhen error or end of file occur.
These indicators may be set and tested explicitly. In addition, the integer expression
errno (declared in <errno.h>) may contain an error number that gives further

infor mation about the most recent error.
void clearerr(FILE *stream

cl earerr clearstheend of fileand error indicatorsfor st r eam
int feof (FILE *stream

f eof returnsnon-zeroif theend of fileindicator for st r eamis set.
int ferror(FILE *stream

ferror returnsnon-zeroif theerror indicator for st reamis set.
voi d perror(const char *s)

perror(s) printss and an implementation-defined error message corresponding
totheinteger inerrno, asif by
fprintf(stderr, "%: %\n", s, "€rror message');

Seestrerror in Section B.3.

B.2 Character Class Tests. <ctype.h>

The header <ct ype. h> declares functions for testing characters. For each function, the
argument list isan i nt , whose value must be ECF or representableasan unsi gned char,

235

and thereturn value is an i nt. The functions return non-zero (true) if the argument c
satisfies the condition described, and zero if not.

i sal num(c) isalpha(c) orisdigit(c) istrue

i sal pha(c) supper(c) orislower(c) istrue

iscntrl(c) control character

isdigit(c) decimal digit

i sgraph(c) printing character except space

i slower(c) |ower-caseletter

isprint(c) printingcharacter including space

i spunct (c) printing character except space or letter or digit
i sspace(c) gspace, formfeed, newline, carriagereturn, tab, vertical tab
i supper (c) upper-case letter

i sxdigit(c) hexadecimal digit

In the seven-bit ASCII character set, the printing charactersare 0x20 (' ') to Ox7E
(' -'); thecontrol charactersare ONUL to 0x1F (US), and 0x7F (DEL).

In addition, there aretwo functionsthat convert the case of letters:

int tolower(c) convertc tolower case
int toupper(c) convertc toupper case

If ¢ is an upper-case letter, t ol ower (c) returns the corresponding lower-case letter,
t oupper (c) returnsthe corresponding upper-case letter; otherwiseit returnsc.

B.3 String Functions: <string.h>

There are two groups of string functions defined in the header <string. h>. Thefirst
have names beginning with st r; the second have names beginning with nem Except for
memmove, the behavior is undefined if copying takes place between overlapping objects.
Comparison functionstreat argumentsasunsi gned char arrays.

In the following table, variabless and t areof typechar *; cs and ct are of type const
char *;nisof typesize_t;andcisanint convertedtochar.

char *strcpy(s,ct) copy stringct tostrings, including'\ 0'; returns.

char copy at most n charactersof stringct tos; returns. Pad with
*strncpy(s,ct,n) \o 'sif ct hasfewer than n characters.

char *strcat(s,ct) concatenatestringct toend of strings; returns.

char concatenate at most n charactersof stringct tostrings,
*strncat(s,ct,n) terminates with'\0'; returns.

comparestringcs tostringct, return <0if cs<ct, Oif cs==ct, or

int strcnp(cs,ct) .
>0if cs>ct .

i nt

strnemp(cs, ct, n) compareat most n charactersof stringcs tostringct ; return <0

236

if cs<ct,Oif cs==ct,or >0if cs>ct .

char *strchr(cs, c) return pointer tofirst occurrenceof ¢ incs or NULL if not

present.
char . . .
*strrchr(cs, c) return pointer to last occurrenceof ¢ incs or NULL if not present.
size_t . . .
strspn(cs, ct) return length of prefix of cs consisting of charactersin ct .
size_t . . .
strespn(cs, ct) return length of prefix of cs consisting of charactersnotin ct .
char return pointer tofirst occurrencein stringcs of any character
*strpbrk(cs,ct) stringct, or NULL if not present.
char return pointer tofirst occurrenceof stringct incs, or NULL if not
*strstr(cs,ct) present.

size_t strlen(cs) returnlength of cs.

return pointer to implementation-defined string corresponding to

char *strerror(n)
error n.

st rt ok searchess for tokensdelimited by charactersfromct ; see
below.

char *strtok(s,ct)

A sequence of callsof strtok(s, ct) splitss into tokens, each delimited by a character
from ct. The first call in a sequence has a non-NULL s, it finds the first token in s
consisting of charactersnot in ct ; it terminates that by overwriting the next character of
s with '\ 0' and returnsa pointer to thetoken. Each subsequent call, indicated by a NULL
value of s, returns the next such token, searching from just past the end of the previous
one. st rt ok returnsNULL when no further token isfound. Thestringct may be different
on each call.

Themem .. functions are meant for manipulating objects as character arrays; the intent
isan interface to efficient routines. In thefollowing table, s and t are of typevoid *;cs
and ct areof type const void *; nisof typesize_t; and c isan i nt converted to an
unsi gned char.

voi d

*memcpy (s, ct, n) copy n charactersfromct tos,and returns.

voi d . . .
*memmove(s, ct,n) ~ Sameasmencpy except that it works even if the objects overlap.
i nt comparethefirst n charactersof cs with ct ; return aswith
mencnp(cs, ct, n) strecnp.

voi d return pointer tofirst occurrence of character c incs, or NULL if
“menmchr(cs, ¢, n) not present among thefirst n characters.

voi d

*memset (s, ¢, n) place character c intofirst n charactersof s, returns.

B.4 Mathematical Functions: <math.h>

Theheader <mat h. h> declares mathematical functions and macr os.

237

The macros EDOMand ERANGE (found in <er r no. h>) are non-zero integral constants that
are used to signal domain and range errors for the functions, HUGE_VAL is a positive
doubl e value. A domain error occursif an argument is outside the domain over which
the function is defined. On a domain error, errno is set to EDOM the return value is
implementation-defined. A range error occurs if the result of the function cannot be
represented as a doubl e. If theresult overflows, the function returns HUGE_VAL with the
right sign, and er r no isset to ERANGE. If theresult underflows, the function returns zer o;
whether er r no isset to ERANGE isimplementation-defined.

In the following table, x and y are of type doubl e, nisan i nt, and all functionsreturn
doubl e. Anglesfor trigonometric functions are expressed in radians.

sin(x) sine of x

cos(x) cosine of x

t an(x) tangent of x

asin(x) sin"}(x) in range [-pi/2,pi/2], x in [-1,1].
acos(x) cos(x) in range[0,pi], x in [-1,1].

at an(x) tan™(x) in range [-pi/2,pi/2].

atan2(y,x) tan’(y/x) in range[-pi,pi].

si nh(x) hyperbolic sine of x

cosh(x) hyper bolic cosine of x

tanh(x) hyperbolic tangent of x

exp(x) exponential function €*

I og(x) natural logarithm In(x), x>0.

| 0910(x) base 10 logarithm logio(x), X>0.

DOW(X, V) ;(r:’i:ggr(?main error occursif x=0 and y<=0, or if x<0 and yisnot an
sqrt(x) sgareroot of x, x>=0.

ceil (x) smallest integer not lessthan x, asa doubl e.
floor(x) largest integer not greater than x, asadoubl e.
fabs(x) absolute value |x|

I dexp(x, n) x* 2"

splitsx into a normalized fraction in theinterval [1/2,1) which is
returned, and a power of 2, which isstored in *exp. If x iszero, both
partsof theresult are zero.

modf (x, splitsx into integral and fractional parts, each with the same sign asx.
double *ip) |tstorestheintegral partin*ip, and returnsthefractional part.

floating-point remainder of x/y, with the same sign asx. If yiszero, the
result isimplementation-defined.

frexp(x, int
*ip)

f mod(x, y)

B.5 Utility Functions: <stdlib.h>

The header <stdlib. h> declares functions for number conversion, storage allocation,
and similar tasks. doubl e at of (const char *s)

238

at of convertss todoubl e; itisequivalenttostrtod(s, (char**)NULL).
int atoi (const char *s)

convertss toint; itisequivalentto(int)strtol (s, (char**)NULL, 10).
| ong atol (const char *s)

convertss tol ong; it isequivalent tostrtol (s, (char**)NULL, 10).
doubl e strtod(const char *s, char **endp)

strtod convertsthe prefix of s todoubl e, ignoring leading white space; it storesa
pointer to any unconverted suffix in *endp unless endp is NULL. If the answer
would overflow, HUGE_VAL isreturned with the proper sign; if the answer would

underflow, zeroisreturned. In either caseer rno is set to ERANGE.
long strtol (const char *s, char **endp, int base)

strtol convertsthe prefix of s to | ong, ignoring leading white space; it stores a
pointer to any unconverted suffix in *endp unlessendp iSNULL. If base iSbetween
2 and 36, conversion is done assuming that the input is written in that base. If
base iszero, the baseis 8, 10, or 16; leading O implies octal and leading 0x or 0X
hexadecimal. Lettersin either case represent digits from 10 to base- 1; a leading
Ox or 0X is permitted in base 16. If the answer would overflow, LONG MAX or
LONG_M N is returned, depending on the sign of the result, and errno is set to

ERANGE.
unsi gned |l ong strtoul (const char *s, char **endp, int base)

strtoul isthesameasstrtol except that theresult isunsigned |ong and the
error value iSULONG_MAX.

int rand(void)
rand returns a pseudo-random integer in the range 0 to RAND_MAX, which is at

least 32767.
voi d srand(unsigned int seed)

srand usesseed asthe seed for a new sequence of pseudo-random numbers. The
initial seed is1.
void *calloc(size_t nobj, size t size)
cal | oc returns a pointer to space for an array of nobj objects, each of size si ze,
or NULL if therequest cannot be satisfied. The spaceisinitialized to zer o bytes.
void *mal |l oc(size t size)
mal | oc returnsa pointer to space for an object of sizesi ze, or NULL if therequest
cannot be satisfied. The spaceisuninitialized.
void *realloc(void *p, size_t size)
real | oc changes the size of the object pointed to by p to si ze. The contents will
be unchanged up to the minimum of the old and new sizes. If the new size is
larger, the new space isuninitialized. r eal | oc returnsa pointer to the new space,

or NULL if therequest cannot be satisfied, in which case * p isunchanged.
void free(void *p)

f r ee deallocates the space pointed to by p; it does nothingif p iSNULL. p must be a

pointer to space previously allocated by cal | oc, mal | oc, or real | oc.
voi d abort (void)

abort causesthe program to terminate abnormally, asif by r ai se(Sl GABRT) .
void exit(int status)

exi t causes normal program termination. at exi t functionsare called in reverse
order of registration, open files are flushed, open streams are closed, and control
is returned to the environment. How st at us is returned to the environment is
implementation-dependent, but zero is taken as successful termination. The
values EXI T_SUCCESS and EXI T_FAI LURE may also be used.

int atexit(void (*fcn)(void))
atexit registers the function fcn to be called when the program terminates

normally; it returnsnon-zero if the registration cannot be made.
i nt systen(const char *s)

239

syst empasses the string s to the environment for execution. If s iSNULL, syst em
returns non-zero if there is a command processor. If s isnot NULL, the return

valueisimplementation-dependent.
char *getenv(const char *nane)

get env returnsthe environment string associated with name, or NULL if no string
exists. Details are implementation-dependent.

voi d *bsearch(const void *key, const void *base,

size t n, size_t size,

int (*cnp)(const void *keyval, const void *datum)
bsearch searches base[0]...base[n-1] for an item that matches *key. The
function cnp must return negative if its first argument (the search key) is less
than its second (a table entry), zero if equal, and positive if greater. Itemsin the
array base must bein ascending order. bsear ch returns a pointer to a matching
item, or NULL if none exists.

void gsort(void *base, size_t n, size_t size
int (*cnp)(const void *, const void *))
gsort sortsintoascending order an array base[0] . . . base[n- 1] of objectsof size

si ze. Thecomparison function cnp isasin bsear ch.
int abs(int n)
abs returnsthe absolute value of itsi nt argument.
[ong | abs(l ong n)
| abs returnsthe absolute value of itsl ong argument.
div_t div(int num int denom
di v computesthe quotient and remainder of nun’ denom Theresultsarestored in
thei nt membersquot and remof astructureof typedi v_t .
[div_t Idiv(long num [ong denom
| di v.computes the quotient and remainder of num denom The results are stored
inthel ong membersquot and remof a structureof typel di v_t .

B.6 Diagnostics. <assert.h>
Theassert macroisused to add diagnosticsto programs:

voi d assert(int expression)

If expression iszerowhen

assert (expression)

isexecuted, theassert macrowill print on st derr a message, such as
Assertion failed: expression,fil e filename |ine nnn

It then calls abort to terminate execution. The source filename and line number come
from the preprocessor macros__FILE__and __LINE__.

| f NDEBUGis defined at thetime<assert . h> isincluded, theassert macroisignored.

B.7 Variable Argument Lists: <stdarg.h>

240

The header <stdarg. h> provides facilities for stepping through a list of function
arguments of unknown number and type.

Suppose | ast ar g isthe last named parameter of a function f with a variable number of
arguments. Then declare within f a variable of type va_li st that will point to each
argument in turn:

va_|ist ap;
ap must be initialized once with the macro va_st art before any unnamed argument is
accessed:

va_start(va_list ap, lastarg);

Thereafter, each execution of the macro va_ar g will produce a value that has the type
and value of the next unnamed argument, and will also modify ap so the next use of
va_ar g returnsthe next argument:

typeva_arg(va_list ap, type;

Themacro

void va_end(va_list ap);
must be called once after the arguments have been processed but beforef isexited.

B.8 Non-local Jumps: <setjmp.h>

The declarations in <setj np. h> provide a way to avoid the normal function call and
return sequence, typically to permit an immediate return from a deeply nested function

call.
int setjnp(jnm_buf env)

Themacro set j np saves state information in env for use by | ongj np. Thereturn
is zero from a direct call of setjnp, and non-zero from a subsequent call of
| ongj np. A call to set j np can only occur in certain contexts, basically the test of
i f,swi tch, and loops, and only in ssimplerelational expressions.

if (setjnmp(env) == 0)

/* get here on direct call */
el se

/* get here by calling longjnp */

voi d | ongjnp(jnp_buf env, int val)

| ongj np restores the state saved by the most recent call to setj np, using the
information saved in env, and execution resumes as if the setj np function had
just executed and returned the non-zero value val . The function containing the
set j mp must not have terminated. Accessible objects have the values they had at
thetime | ongj np was called, except that non-vol at i | e automatic variablesin the
function calling set j np become undefined if they were changed after the set j np
call.

B.9 Signals: <signal.h>

241

The header <si gnal . h> provides facilities for handling exceptional conditionsthat arise
during execution, such as an interrupt signal from an external source or an error in
execution.

void (*signal (int sig, void (*handler)(int)))(int)

si gnal determines how subsequent signals will be handled. If handl er isSI G DFL, the
implementation-defined default behavior is used, if it isSI G_|I GN, the signal isignored;
otherwise, the function pointed to by handl er will be called, with the argument of the
typeof signal. Valid signalsinclude

SI GABRT abnormal termination, e.g., from abor t

SIGFPE arithmeticerror, e.g., zero divide or overflow

SIGLL illegal function image, eg., illegal instruction

SIG NT interactive attention, e.g., interrupt

SI GSEGV illegal storage access, e.g., access outside memory limits
SI GTERM termination request sent to thisprogram

si gnal returns the previous value of handl er for the specific signal, or SI G ERRIif an
error occurs.

When a signal si g subsequently occurs, the signal is restored to its default behavior;
then the signal-handler function is called, as if by (*handl er)(sig). If the handler
returns, execution will resumewhereit waswhen the signal occurred.

Theinitial state of signalsisimplementation-defined.

int raise(int sig)
rai se sendsthesignal si g totheprogram; it returnsnon-zero if unsuccessful.

B.10 Date and Time Functions: <time.h>

The header <time. h> declares types and functions for manipulating date and time.
Some functions process local time, which may differ from calendar time, for example
because of time zone. cl ock_t and ti ne_t are arithmetic types representing times, and
struct t mholdsthe components of a calendar time:

Int tmsec; secondsafter theminute (0,61)
int tmmn; minutesafter the hour (0,59)
int tm_hour; hourssince midnight (0,23)
int tmnmday; day of themonth (1,31)

int tmnon; monthssince January (0,11)
int tmyear; yearssince 1900

int tmwday; dayssince Sunday (0,6)

int tmyday; dayssinceJanuary 1(0,365)
int tm.isdst; Daylight Saving Timeflag

242

t m i sdst ispositive if Daylight Saving Time isin effect, zero if not, and negative if the
information isnot available.

clock t clock(void)
cl ock returns the processor time used by the program since the beginning of
execution, or - 1 if unavailable. cl ock()/ CLK_PER_SECisatimein seconds.
time_t time(time_t *tp)
ti me returnsthe current calendar timeor -1 if thetimeisnot available. If tp is
not NULL, thereturn valueisalso assigned to *t p.
double difftinme(time_t tine2, time_t tinel)
di fftimereturnsti me2-ti mel expressed in seconds.
time_t nktime(struct tm *tp)
mkt i me convertsthelocal timein the structure*t p into calendar timein the same
representation used by ti me. The components will have values in the ranges
shown. nkt i me returnsthe calendar timeor - 1 if it cannot be represented.
The next four functions return pointers to static objects that may be overwritten by

other calls.

char *asctinme(const struct tm *tp)
asctime</tt< converts the time in the structure *tp into a string of
the form

Sun Jan 3 15:14:13 1988\n\0
char *ctinme(const time_t *tp)
ctinme converts the calendar time *tp to local tinme; it is equival ent
to

asctime(localtine(tp))

struct tm*gntinme(const tinme_t *tp)
gntinme converts the calendar tinme *tp into Coordi nated Universal Tine
(UTC). It returns NULL if UTC is not available. The name gntine has
hi st orical significance.

struct tm*localtinme(const tinme_t *tp)
localtinme converts the calendar tinme *tp into | ocal tine.

size t strftime(char *s, size t snmax, const char *fnt, const struct tm*tp)
strftime formats date and tinme information from*tp into s according
to fm, which is analogous to a printf format. Ordinary characters
(including the termnating '\0') are copied into s. Each % is
repl aced as descri bed bel ow, using val ues appropriate for the | ocal
environnent. No nore than smax characters are placed into s. strftinme
returns the nunber of characters, excluding the '\0', or zero if nore
than smax characters were produced.

Y%a abbreviated weekday name.
YA full weekday name.

% abbreviated month name.

%8 full month name.

% local date and timerepresentation.
% day of themonth (01- 31).

%1 hour (24-hour clock) (00- 23).
% hour (12-hour clock) (01-12).
% day of theyear (001- 366).
%n month (01-12).

%M minute(00-59).

% local equivalent of AM or PM.

243

% second (00-61).

% week number of theyear (Sunday as 1st day of week) (00- 53) .
% weekday (0- 6, Sunday is0).

%N week number of theyear (Monday as 1st day of week) (00-53).
%< local daterepresentation.

%X |ocal timerepresentation.

% year without century (00-99) .

% year with century.

% timezonename, if any.
Wo Y

B.11 I npl enentation-defined Limts:
<limts.h> and <float. h>

The header <limts.h> defines constants for the sizes of integral types.
The val ues bel ow are acceptabl e m ni nrum nmagni tudes; |arger values may be
used.

CHAR BIT 8 bitsin achar

CHAR_MAX UCHAR_MAX Or SCHAR MAX maximum value of char

CHAR_M N 0 or SCHAR M N maximum value of char

I NT_MAX 32767 maximum value of i nt

INT_MN -32767 minimum value of i nt

LONG_MAX 2147483647 maximum value of | ong

LONG M N -2147483647 minimum value of | ong
SCHAR_MAX +127 maximum value of si gned char
SCHAR_ M N -127 minimum value of si gned char
SHRT_MAX +32767 maximum value of short

SHRT_M N -32767 minimum value of short
UCHAR_MAX 255 maximum value of unsi gned char
U NT_MAX 65535 maximum value of unsi gned i nt
ULONG_MAX 4294967295 maximum value of unsi gned | ong
USHRT _MAX 65535 maximum value of unsi gned short

The nanmes in the table below, a subset of <float.h> are constants related
to floating-point arithmetic. Wen a value is given, it represents the
m ni mum magnitude for the corresponding quantity. Each inplenentation
defi nes appropriate val ues.

FLT_RADI X 2 radix of exponent, representation, e.g., 2, 16
FLT_ROUNDS floating-point rounding mode for addition
FLT_DI G 6 decimal digitsof precision

FLT_EPSILON 1E-5 smallest number x such that 1.0+x !'=1.0
FLT_MANT_DI G number of base FLT_RADI X in mantissa

FLT_MAX 1E+37 maximum floating-point number

FLT_MAX_EXP
FLT_M N
FLT_M N_EXP
DBL_DI G
DBL_EPSI LON
DBL_MANT_DI G
DBL_MAX
DBL_MAX_EXP
DBL_M N
DBL_M N_EXP

1E- 37

10
1E-9

1E+37

1E- 37

maximum n such that FLT_RADI X" isrepresentable
minimum nor malized floating-point number
minimum n such that 10" is a normalized number
decimal digitsof precision

smallest number x such that 1.0+x !=1.0

number of base FLT_RADI X in mantissa

maximum doubl e floating-point number

maximum n such that FLT_RADI X" ! isrepresentable
minimum nor malized doubl e floating-point number
minimum n such that 10" is a normalized number

244

245

Appendix C - Summary of Changes

Since the publication of the first edition of this book, the definition of the C language has
undergone changes. Almost all were extensions of the original language, and were
carefully designed to remain compatible with existing practice; some repaired
ambiguities in the original description; and some represent modifications that change
existing practicee. Many of the new facilities were announced in the documents
accompanying compilers available from AT& T, and have subsequently been adopted by
other suppliers of C compilers. More recently, the ANSI committee standardizing the
language incorporated most of the changes, and also introduced other significant
modifications. Their report wasin part participated by some commer cial compilers even
befor e issuance of the formal C standard.

This Appendix summarizes the differences between the language defined by the first
edition of this book, and that expected to be defined by the final standard. It treats only
the language itself, not its environment and library; although these are an important
part of the standard, there is little to compare with, because the first edition did not
attempt to prescribe an environment or library.

Preprocessing is mor e car efully defined in the Standard than in the first edition,
and is extended: it is explicitly token based; there are new operators for
concatenation of tokens @#), and creation of strings @); there are new control
lines like #elif and #pragma; redeclaration of macros by the same token
sequence is explicitly permitted; parameters inside strings are no longer
replaced. Splicing of lines by \ is permitted everywhere, not just in strings and
macr o definitions. See Par .A.12.

The minimum significance of all internal identifiers increased to 31 characters;
the smallest mandated significance of identifiers with external linkage remains 6
monocase letters. (Many implementations provide more.)

Trigraph sequences introduced by ?? allow representation of characters lacking
in some character sets. Escapes for #\~[]1{}|~ are defined, see Par.A.12.1.
Observe that the introduction of trigraphs may change the meaning of strings
containing the sequence ?2.

New keywords (voi d, const, volatile, signed, enum) areintroduced. The
stillborn ent ry keyword iswithdrawn.

New escape sequences, for use within character constants and string literals, are
defined. The effect of following \ by a character not part of an approved escape
sequenceisundefined. See Par.A.2.5.2.

Everyone' sfavoritetrivial change: 8 and 9 arenot octal digits.

The standard introduces a larger set of suffixes to make the type of constants
explicit: uor L for integers, F or L for floating. It also refinestherulesfor thetype
of unsiffixed constants (Par.A.2.5).

Adjacent string literals ar e concatenated.

Thereisa notation for wide-character string literals and character constants; see
Par.A.2.6.

Characters as well as other types, may be explicitly declared to carry, or not to
carry, a sign by using the keywords si gned or unsi gned. The locution | ong
f1 oat asa synonym for doubl e iswithdrawn, but | ong doubl e may be used to
declare an extra-precision floating quantity.

246

For sometime, type unsi gned char has been available. The standard introduces
the si gned keyword to make signedness explicit for char and other integral
obj ects.

The voi d type has been available in most implementations for some years. The
Standard introduces the use of the void * type as a generic pointer type;
previously char * played thisrole. At the same time, explicit rules are enacted
against mixing pointers and integers, and pointers of different type, without the
use of casts.

The Standard places explicit minima on the ranges of the arithmetic types, and
mandates headers (<l i mi ts. h>and <f | oat . h>) giving the characteristics of each
particular implementation.

Enumerations are new since thefirst edition of this book.

The Standard adopts from C++ the notion of type qualifier, for example const
(Par.A.8.2).

Strings are no longer modifiable, and so may be placed in read-only memory.

The ““usual arithmetic conversions' are changed, essentially from ““for integers,
unsi gned alwayswins; for floating point, always use doubl e" to ~“promote to the
smallest capacious-enough type." See Par.A.6.5.

The old assignment operators like =+ are truly gone. Also, assignment operators
are now singletokens; in thefirst edition, they were pairs, and could be separ ated
by white space.

A compiler's license to treat mathematically associative operators as
computationally associativeisrevoked.

A unary + operator isintroduced for symmetry with unary - .

A pointer to a function may be used as a function designator without an explicit *
operator. See Par.A.7.3.2.

Structures may be assigned, passed to functions, and returned by functions.
Applying the address-of operator to arrays is permitted, and the result is a
pointer tothearray.

The si zeof operator, in the first edition, yielded type i nt ; subsequently, many
implementations made it unsi gned. The Standard makes its type explicitly
implementation-dependent, but requires the type, size_t, to be defined in a
standard header (<st ddef. h>). A similar change occursin the type (ptrdi ff _t)
of the difference between pointers. See Par.A.7.4.8 and Par .A.7.7.

The address-of operator & may not be applied to an object declared regi ster,
even if theimplementation chooses not to keep the object in aregister.

The type of a shift expression is that of the left operand; the right operand can't
promotetheresult. See Par.A.7.8.

The Standard legalizes the creation of a pointer just beyond the end of an array,
and allows arithmetic and relationson it; see Par.A.7.7.

The Standard introduces (borrowing from C++) the notion of a function
prototype declaration that incorporates the types of the parameters, and includes
an explicit recognition of variadic functions together with an approved way of
dealing with them. See Pars. A.7.3.2, A.8.6.3, B.7. The older styleis still accepted,
with restrictions.

Empty declarations, which have no declarators and don't declare at least a
structure, union, or enumeration, are forbidden by the Standard. On the other
hand, a declaration with just a structure or union tag redeclaresthat tag even if it
was declared in an outer scope.

External data declarations without any specifiers or qualifiers (just a naked
declarator) areforbidden.

247

Some implementations, when presented with an ext ern declaration in an inner
block, would export the declaration to the rest of the file. The Standard makes it
clear that the scope of such a declaration isjust the block.

The scope of parametersisinjected into a function's compound statement, so that
variable declarations at thetop level of the function cannot hide the parameters.
The name spaces of identifiers are somewhat different. The Standard puts all
tagsin a single name space, and also introduces a separ ate name space for labels;
see Par.A.11.1. Also, member names ar e associated with the structure or union of
which they areapart. (Thishas been common practice from sometime.)

Unions may beinitialized; theinitializer refersto thefirst member.

Automatic structures, unions, and arrays may be initialized, albeit in arestricted
way.

Character arrays with an explicit size may be initialized by a string literal with
exactly that many characters(the\ 0 isquietly squeezed out).

The controlling expression, and the case labels, of a switch may have any integral

type.

